D'Alembert Formula for Diffusion-Wave Equation

被引:2
|
作者
Pskhu, A. V. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math & Automat, Kabardino Balkarian Sci Ctr, Nalchik 360000, Kabardino Balka, Russia
关键词
diffusion-wave equation; Liouville fractional derivative; d'Alembert formula; BOUNDARY-VALUE PROBLEM; FRACTIONAL DIFFUSION; CAUCHY-PROBLEM;
D O I
10.1134/S1995080223020312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a representation of solutions for diffusion-wave equations as a sum of two solutions of the first order PDEs. Fractional differentiation is given by the Liouville fractional derivative. The representation is an analogue of the d'Alembert formula known for the wave equation. In the case of an infinite rectangular domain (half-strip), we give relations that connect the traces of the solutions involved in the representation on the boundary of the domain.
引用
收藏
页码:644 / 652
页数:9
相关论文
共 50 条
  • [21] The fundamental solution of a diffusion-wave equation of fractional order
    Pskhu, A. V.
    IZVESTIYA MATHEMATICS, 2009, 73 (02) : 351 - 392
  • [22] A compact difference scheme for the fractional diffusion-wave equation
    Du, R.
    Cao, W. R.
    Sun, Z. Z.
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) : 2998 - 3007
  • [23] Particle wave functions as solutions of the D'Alembert equation
    Kudusov, A. S.
    BULLETIN OF THE UNIVERSITY OF KARAGANDA-PHYSICS, 2012, 3 (67): : 3 - 8
  • [24] Asymptotic properties of solutions of the fractional diffusion-wave equation
    Kochubei, Anatoly N.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 881 - 896
  • [25] Asymptotic properties of solutions of the fractional diffusion-wave equation
    Anatoly N. Kochubei
    Fractional Calculus and Applied Analysis, 2014, 17 : 881 - 896
  • [26] A New Numerical Approach for Solving 1D Fractional Diffusion-Wave Equation
    Ali, Umair
    Khan, Muhammad Asim
    Khater, Mostafa M. A.
    Mousa, A. A.
    Attia, Raghda A. M.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [27] A generalization of d'Alembert formula
    Chang, Yu-Hsien
    Hong, Cheng-Hong
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (03): : 411 - 427
  • [28] A generalization of d’Alembert formula
    Yu-Hsien Chang
    Cheng-Hong Hong
    Proceedings Mathematical Sciences, 2007, 117 : 411 - 427
  • [29] Simultaneous Determination of the Order and a Coefficient in a Fractional Diffusion-Wave Equation
    Wei, Ting
    Deng, Ruidi
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [30] Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation
    Jincheng Ren
    Xiaonian Long
    Shipeng Mao
    Jiwei Zhang
    Journal of Scientific Computing, 2017, 72 : 917 - 935