Max-max, max-min, min-max and min-min knapsack problems with a parametric constraint

被引:0
|
作者
Halman, Nir [1 ]
Kovalyov, Mikhail Y. [2 ]
Quilliot, Alain [3 ]
机构
[1] Bar Ilan Univ, Ramat Gan, Israel
[2] Natl Acad Sci Belarus, United Inst Informat Problems, Minsk, BELARUS
[3] Univ Blaise Pascal, UMR CNRS 6158, LIMOS, Bat ISIMA,Campus Cezeaux,BP 125, F-63173 Aubiere, France
来源
基金
以色列科学基金会;
关键词
Knapsack problems; Parametric optimization; Polynomial algorithm; FPTAS; ALGORITHMS; COMPLEXITY; FPTAS;
D O I
10.1007/s10288-022-00509-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Max-max, max-min, min-max and min-min optimization problems with a knapsack-type constraint containing a single numerical parameter are studied. The goal is to present optimal solutions for all possible values of the parameter. Algorithms with O (n log n) and O (n(2)) running times are proposed for the problems with a fixed parameter and for the general problem, respectively, where n is the number of items to be packed into the knapsack. The latter algorithm determines optimal solution values for all values of the parameter in O (n log(2) n) time. The problem of deciding whether there exists a single optimal solution for all values of the numerical parameter is proved to be NP-complete.
引用
收藏
页码:235 / 246
页数:12
相关论文
共 50 条
  • [41] Min-Max Propagation
    Srinivasa, Christopher
    Givoni, Inmar
    Ravanbakhsh, Siamak
    Frey, Brendan J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [42] MIN-MAX INDICATOR
    VASILEV, SI
    SIDELNIKOV, ZI
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (06) : 1325 - 1327
  • [43] On a min-max theorem
    Wu G.R.
    Huang W.H.
    Shen Z.H.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (3) : 293 - 298
  • [44] On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles
    Djehiche, Boualem
    Hamadene, Said
    Morlais, Marie-Amehe
    Zhao, Xuzhe
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 148 - 175
  • [45] Unifying view on min-max fairness, max-min fairness, and utility optimization in cellular networks
    Boche, Holger
    Wiczanowski, Marcin
    Stanczak, Slawomir
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2007, 2007 (1)
  • [46] The min-max composition rule and its superiority over the usual max-min composition rule
    Kundu, S
    FUZZY SETS AND SYSTEMS, 1998, 93 (03) : 319 - 329
  • [47] Min-max and min-max (relative) regret approaches to representatives selection problem
    Dolgui, Alexandre
    Kovalev, Sergey
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (02): : 181 - 192
  • [48] Complexity of the min-max (regret) versions of min cut problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    DISCRETE OPTIMIZATION, 2008, 5 (01) : 66 - 73
  • [49] 网格计算中Min-min和Max-min的分析与比较
    黄长俊
    杨晓辉
    许熠
    福建电脑, 2009, 25 (08) : 67 - 68
  • [50] Min-max controllable risk problems
    Gurevsky, Evgeny
    Kovalev, Sergey
    Kovalyov, Mikhail Y.
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2021, 19 (01): : 93 - 101