Max-max, max-min, min-max and min-min knapsack problems with a parametric constraint

被引:0
|
作者
Halman, Nir [1 ]
Kovalyov, Mikhail Y. [2 ]
Quilliot, Alain [3 ]
机构
[1] Bar Ilan Univ, Ramat Gan, Israel
[2] Natl Acad Sci Belarus, United Inst Informat Problems, Minsk, BELARUS
[3] Univ Blaise Pascal, UMR CNRS 6158, LIMOS, Bat ISIMA,Campus Cezeaux,BP 125, F-63173 Aubiere, France
来源
基金
以色列科学基金会;
关键词
Knapsack problems; Parametric optimization; Polynomial algorithm; FPTAS; ALGORITHMS; COMPLEXITY; FPTAS;
D O I
10.1007/s10288-022-00509-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Max-max, max-min, min-max and min-min optimization problems with a knapsack-type constraint containing a single numerical parameter are studied. The goal is to present optimal solutions for all possible values of the parameter. Algorithms with O (n log n) and O (n(2)) running times are proposed for the problems with a fixed parameter and for the general problem, respectively, where n is the number of items to be packed into the knapsack. The latter algorithm determines optimal solution values for all values of the parameter in O (n log(2) n) time. The problem of deciding whether there exists a single optimal solution for all values of the numerical parameter is proved to be NP-complete.
引用
收藏
页码:235 / 246
页数:12
相关论文
共 50 条
  • [31] Dynamic Min-Max Problems
    Uwe Schwiegelshohn
    Lothar Thiele
    Discrete Event Dynamic Systems, 1999, 9 : 111 - 134
  • [32] Approximation and resolution of min-max and min-max regret versions of combinatorial optimization problems
    Aissi H.
    4OR, 2006, 4 (4) : 347 - 350
  • [33] Approximation of min-max and min-max regret versions of some combinatorial optimization problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (02) : 281 - 290
  • [34] A MAX-MIN PROBLEM
    MARSH, DCB
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (1P1): : 86 - &
  • [35] Max-min separability
    Bagirov, AM
    OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (2-3): : 271 - 290
  • [36] ON A MIN-MAX THEOREM
    CHEN FANGQI
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 1997, (03) : 43 - 48
  • [37] Min-max and min-min stackelberg strategies with closed-loop information structure
    Jungers, M.
    Trelat, E.
    Abou-Kandil, H.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2011, 17 (03) : 387 - 425
  • [38] Min-max and min-min stackelberg strategies with closed-loop information structure
    M. Jungers
    E. Trelat
    H. Abou-kandil
    Journal of Dynamical and Control Systems, 2011, 17 : 387 - 425
  • [39] Power Allocation with Max-Min and Min-Max Fairness for Cognitive Radio Networks with Imperfect CSI
    Tang Lun
    Yan Jing-lin
    Li Qing
    Chen Qian-bin
    Wang Huan
    WIRELESS PERSONAL COMMUNICATIONS, 2012, 65 (03) : 671 - 687
  • [40] Unifying View on Min-Max Fairness, Max-Min Fairness, and Utility Optimization in Cellular Networks
    Holger Boche
    Marcin Wiczanowski
    Slawomir Stanczak
    EURASIP Journal on Wireless Communications and Networking, 2007