Max-max, max-min, min-max and min-min knapsack problems with a parametric constraint

被引:0
|
作者
Halman, Nir [1 ]
Kovalyov, Mikhail Y. [2 ]
Quilliot, Alain [3 ]
机构
[1] Bar Ilan Univ, Ramat Gan, Israel
[2] Natl Acad Sci Belarus, United Inst Informat Problems, Minsk, BELARUS
[3] Univ Blaise Pascal, UMR CNRS 6158, LIMOS, Bat ISIMA,Campus Cezeaux,BP 125, F-63173 Aubiere, France
来源
基金
以色列科学基金会;
关键词
Knapsack problems; Parametric optimization; Polynomial algorithm; FPTAS; ALGORITHMS; COMPLEXITY; FPTAS;
D O I
10.1007/s10288-022-00509-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Max-max, max-min, min-max and min-min optimization problems with a knapsack-type constraint containing a single numerical parameter are studied. The goal is to present optimal solutions for all possible values of the parameter. Algorithms with O (n log n) and O (n(2)) running times are proposed for the problems with a fixed parameter and for the general problem, respectively, where n is the number of items to be packed into the knapsack. The latter algorithm determines optimal solution values for all values of the parameter in O (n log(2) n) time. The problem of deciding whether there exists a single optimal solution for all values of the numerical parameter is proved to be NP-complete.
引用
收藏
页码:235 / 246
页数:12
相关论文
共 50 条
  • [11] Approximation algorithms for min-max and max-min resource sharing problems, and applications
    Jansen, K
    EFFICIENT APPROXIMATION AND ONLINE ALGORITHMS: RECENT PROGRESS ON CLASSICAL COMBINATORIAL OPTIMIZATION PROBLEMS AND NEW APPLICATIONS, 2006, 3484 : 156 - 202
  • [12] A Deterministic Algorithm for Min-max and Max-min Linear Fractional Programming Problems
    Feng, Qigao
    Jiao, Hongwei
    Mao, Hanping
    Chen, Yongqiang
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2011, 4 (02): : 134 - 141
  • [13] Complexity of the min-max and min-max regret assignment problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 634 - 640
  • [14] MAX-MIN PROBLEMS
    KAPUR, KC
    NAVAL RESEARCH LOGISTICS, 1973, 20 (04) : 639 - 644
  • [15] A Distributed Algorithm for Min-Max Tree and Max-Min Cut Problems in Communication Networks
    Guo, Song
    Leung, Victor C. M.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2010, 18 (04) : 1067 - 1076
  • [16] A Min-Min Max-Min selective algorihtm for grid task scheduling
    Etminani, Kobra
    Naghibzadeh, M.
    2007 THIRD IEEE/IFIP INTERNATIONAL CONFERENCE IN CENTRAL ASIA ON INTERNET, 2007, : 167 - 173
  • [17] Solution of Multi-objective Min-Max and Max-Min Games by Evolution
    Avigad, Gideon
    Eisenstadt, Erella
    Glizer, Valery Y.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 246 - 260
  • [18] A bird's eye-view of min-max and max-min functionals
    Kaiser, MJ
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 24 (09) : 49 - 61
  • [19] Combining Max-Min and Max-Max Approaches for Robust SoS Architecting
    Farhangi, Hadi
    Konur, Dincer
    Dagli, Cihan H.
    COMPLEX ADAPTIVE SYSTEMS, 2016, 95 : 103 - 110
  • [20] An aggregate deformation homotopy method for min-max-min problems with max-min constraints
    Hui-juan Xiong
    Bo Yu
    Computational Optimization and Applications, 2010, 47 : 501 - 527