Homogenization of Monotone Parabolic Problems with an Arbitrary Number of Spatial and Temporal Scales

被引:0
|
作者
Danielsson, Tatiana [1 ]
Floden, Liselott [1 ]
Johnsen, Pernilla [1 ]
Lindberg, Marianne Olsson [1 ]
机构
[1] Mid Sweden Univ, Dept Engn Math & Sci Educ, Kunskapens Vag 8, S-83125 Ostersund, Sweden
关键词
homogenization; parabolic; monotone; two-scale convergence; multiscale convergence; very weak multiscale convergence; PERIODIC HOMOGENIZATION; SIGMA-CONVERGENCE; OPERATORS;
D O I
10.21136/AM.2023.0269-22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter epsilon. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条