Numerical homogenization for nonlinear strongly monotone problems

被引:2
|
作者
Verfuerth, Barbara [1 ]
机构
[1] Karlsruher Inst Technol, Inst Angew & Numer Math, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
multiscale method; numerical homogenization; nonlinear monotone problem; a priori error estimates; HETEROGENEOUS MULTISCALE METHOD; DISCRETIZATION TECHNIQUES; DECOMPOSITION; APPROXIMATIONS;
D O I
10.1093/imanum/drab004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce and analyse a new multiscale method for strongly nonlinear monotone equations in the spirit of the localized orthogonal decomposition. A problem-adapted multiscale space is constructed by solving linear local fine-scale problems, which is then used in a generalized finite element method. The linearity of the fine-scale problems allows their localization and, moreover, makes the method very efficient to use. The new method gives optimal a priori error estimates up to linearization errors. The results neither require structural assumptions on the coefficient such as periodicity or scale separation nor higher regularity of the solution. The effect of different linearization strategies is discussed in theory and practice. Several numerical examples including the stationary Richards equation confirm the theory and underline the applicability of the method.
引用
收藏
页码:1313 / 1338
页数:26
相关论文
共 50 条
  • [1] LINEARIZED NUMERICAL HOMOGENIZATION METHOD FOR NONLINEAR MONOTONE PARABOLIC MULTISCALE PROBLEMS
    Abdulle, A.
    Huber, M. E.
    Vilmart, G.
    MULTISCALE MODELING & SIMULATION, 2015, 13 (03): : 916 - 952
  • [2] Numerical Homogenization Methods for Parabolic Monotone Problems
    Abdulle, Assyr
    BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 : 1 - 38
  • [3] Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization
    Abdulle, Assyr
    Huber, Martin E.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) : 955 - 969
  • [4] STRONGLY NONLINEAR, MULTIVALUED, PERIODIC PROBLEMS WITH MAXIMAL MONOTONE TERMS
    Papageorgiou, Evgenia H.
    Papageorgiou, Nikolaos S.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2004, 17 (3-4) : 443 - 480
  • [5] REITERATED HOMOGENIZATION OF NONLINEAR MONOTONE OPERATORS
    J. L. LIONS D. LUKKASSEN L. E. PERSSON P. WALL (Dedicated to Professor Jaak Peetre on the Occasion of his 65th Birthday)
    Chinese Annals of Mathematics, 2001, (01) : 1 - 12
  • [6] Numerical homogenization of monotone elliptic operators
    Efendiev, Y
    Pankov, A
    MULTISCALE MODELING & SIMULATION, 2003, 2 (01): : 62 - 79
  • [7] Reiterated homogenization of nonlinear monotone operators
    Lions, JL
    Lukkassen, D
    Persson, LE
    Wall, P
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2001, 22 (01) : 1 - 12
  • [8] FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR NONLINEAR MONOTONE PARABOLIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Huber, Martin E.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1659 - 1697
  • [9] Reiterated homogenization of monotone parabolic problems
    Flodén L.
    Holmbom A.
    Olsson M.
    Svanstedt N.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2007, 53 (2) : 217 - 232
  • [10] Homogenization of Monotone Problems with Uncertain Coefficients
    Francu, Jan
    Nechvatal, Ludek
    MATHEMATICAL MODELLING AND ANALYSIS, 2011, 16 (03) : 432 - 441