Numerical homogenization for nonlinear strongly monotone problems

被引:2
|
作者
Verfuerth, Barbara [1 ]
机构
[1] Karlsruher Inst Technol, Inst Angew & Numer Math, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
multiscale method; numerical homogenization; nonlinear monotone problem; a priori error estimates; HETEROGENEOUS MULTISCALE METHOD; DISCRETIZATION TECHNIQUES; DECOMPOSITION; APPROXIMATIONS;
D O I
10.1093/imanum/drab004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce and analyse a new multiscale method for strongly nonlinear monotone equations in the spirit of the localized orthogonal decomposition. A problem-adapted multiscale space is constructed by solving linear local fine-scale problems, which is then used in a generalized finite element method. The linearity of the fine-scale problems allows their localization and, moreover, makes the method very efficient to use. The new method gives optimal a priori error estimates up to linearization errors. The results neither require structural assumptions on the coefficient such as periodicity or scale separation nor higher regularity of the solution. The effect of different linearization strategies is discussed in theory and practice. Several numerical examples including the stationary Richards equation confirm the theory and underline the applicability of the method.
引用
收藏
页码:1313 / 1338
页数:26
相关论文
共 50 条
  • [41] Homogenization of Nonlinear Problems in the Mechanics of Composites
    Sheshenin, S. V.
    Savenkova, M. I.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2012, 67 (5-6) : 126 - 130
  • [42] STRONGLY NONLINEAR PARABOLIC PROBLEMS
    ELDESSOUKY, AT
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3C (01): : 325 - 341
  • [43] Localization and multiplicity in the homogenization of nonlinear problems
    Bunoiu, Renata
    Precup, Radu
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 292 - 304
  • [44] STRONGLY NONLINEAR EIGENVALUE PROBLEMS
    MUSTONEN, V
    QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (108): : 489 - 509
  • [45] The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods
    Abdulle, Assyr
    Vilmart, Gilles
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (19-20) : 1041 - 1046
  • [46] An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies
    Gloria, Antoine
    MULTISCALE MODELING & SIMULATION, 2006, 5 (03): : 996 - 1043
  • [47] A posteriori estimation of the linearization error for strongly monotone nonlinear operators
    Chaillou, Alexandra
    Suri, Manil
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 72 - 87
  • [48] Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales
    Tatiana Danielsson
    Liselott Flodén
    Pernilla Johnsen
    Marianne Olsson Lindberg
    Applications of Mathematics, 2024, 69 : 1 - 24
  • [49] Homogenization of Monotone Parabolic Problems with an Arbitrary Number of Spatial and Temporal Scales
    Danielsson, Tatiana
    Floden, Liselott
    Johnsen, Pernilla
    Lindberg, Marianne Olsson
    APPLICATIONS OF MATHEMATICS, 2024, 69 (01) : 1 - 24
  • [50] A Dynamical System for Strongly Pseudo-monotone Equilibrium Problems
    Phan Tu Vuong
    Jean Jacques Strodiot
    Journal of Optimization Theory and Applications, 2020, 185 : 767 - 784