Homogenization of Monotone Parabolic Problems with an Arbitrary Number of Spatial and Temporal Scales

被引:0
|
作者
Danielsson, Tatiana [1 ]
Floden, Liselott [1 ]
Johnsen, Pernilla [1 ]
Lindberg, Marianne Olsson [1 ]
机构
[1] Mid Sweden Univ, Dept Engn Math & Sci Educ, Kunskapens Vag 8, S-83125 Ostersund, Sweden
关键词
homogenization; parabolic; monotone; two-scale convergence; multiscale convergence; very weak multiscale convergence; PERIODIC HOMOGENIZATION; SIGMA-CONVERGENCE; OPERATORS;
D O I
10.21136/AM.2023.0269-22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter epsilon. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [31] Stochastic homogenization of a class of monotone eigenvalue problems
    Nils Svanstedt
    Applications of Mathematics, 2010, 55 : 385 - 404
  • [32] Periodic Homogenization of a Pseudo-Parabolic Equation via a Spatial-Temporal Decomposition
    Vromans, Arthur J.
    van de Ven, Alphons Adrianus Francisca
    Muntean, Adrian
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2018, 2019, 30 : 321 - 327
  • [33] Homogenization of some parabolic operators with several time scales
    Floden, Liselott
    Olsson, Marianne
    APPLICATIONS OF MATHEMATICS, 2007, 52 (05) : 431 - 446
  • [34] HOMOGENIZATION OF PARABOLIC EQUATIONS WITH A CONTINUUM OF SPACE AND TIME SCALES
    Owhadi, Houman
    Zhang, Lei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 46 (01) : 1 - 36
  • [35] Homogenization of some parabolic operators with several time scales
    Liselott Flodén
    Marianne Olsson
    Applications of Mathematics, 2007, 52 : 431 - 446
  • [36] Asymtotic homogenization of coupled thermo-viscoelastic composites with multiple spatial and temporal scales
    Fish, J
    Yu, Q
    TRENDS IN COMPUTATIONAL STRUCTURAL MECHANICS, 2001, : 99 - 108
  • [37] Homogenization and correctors for monotone problems in cylinders of small diameter
    Casado-Diaz, Juan
    Murat, Francois
    Sili, Ali
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (03): : 519 - 545
  • [38] Multiscale convergence and reiterated homogenization of parabolic problems
    Holmbom A.
    Svanstedt N.
    Wellander N.
    Applications of Mathematics, 2005, 50 (2) : 131 - 151
  • [39] Homogenization of Parabolic Equations with Non-self-similar Scales
    Jun Geng
    Zhongwei Shen
    Archive for Rational Mechanics and Analysis, 2020, 236 : 145 - 188
  • [40] Homogenization of Parabolic Equations with Non-self-similar Scales
    Geng, Jun
    Shen, Zhongwei
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (01) : 145 - 188