ADAPTIVE ENTROPY REGULARIZATION FOR UNSUPERVISED DOMAIN ADAPTATION IN MEDICAL IMAGE SEGMENTATION

被引:1
|
作者
Shi, Andrew [1 ]
Feng, Wei [1 ]
机构
[1] Beijing Airdoc Technol Co Ltd, Beijing, Peoples R China
关键词
Unsupervised domain adaptation; entropy regularization; medical image segmentation;
D O I
10.1109/ISBI53787.2023.10230637
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The unsupervised domain adaptation approach based on adversarial training has achieved promising performance in cross-modality medical image analysis tasks. However, deep learning models often produce overconfident but incorrect predictions, which is exacerbated in the presence of domain shifts. In this paper, we propose an adaptive entropy regularization framework for unsupervised domain adaptation in cross-modality medical image segmentation. Our framework consists of two key designs: pixel reliability assessment and entropy-based confidence regularization. We first assess pixel reliability based on the model's predictive consistency over a set of label-preserving randomly augmented image sets. We then propose an entropy-based confidence regularization strategy, which increases the confidence level by minimizing the information entropy of reliable pixels while maximizing the information entropy of unreliable pixels to diversify their predictions and alleviate the problem of overconfident but incorrect predictions. Extensive experiments on cross-modality cardiac structure segmentation tasks show that our approach outperforms other state-of-the-art UDA methods by a large margin. Our code will be released soon.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] FVP: Fourier Visual Prompting for Source-Free Unsupervised Domain Adaptation of Medical Image Segmentation
    Wang, Yan
    Cheng, Jian
    Chen, Yixin
    Shao, Shuai
    Zhu, Lanyun
    Wu, Zhenzhou
    Liu, Tao
    Zhu, Haogang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) : 3738 - 3751
  • [42] A Novel Domain Adaptation Framework for Medical Image Segmentation
    Gholami, Amir
    Subramanian, Shashank
    Shenoy, Varun
    Himthani, Naveen
    Yue, Xiangyu
    Zhao, Sicheng
    Jin, Peter
    Biros, George
    Keutzer, Kurt
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 289 - 298
  • [43] Unsupervised domain adaptation for medical imaging segmentation with self-ensembling
    Perone, Christian S.
    Ballester, Pedro
    Barros, Rodrigo C.
    Cohen-Adad, Julien
    NEUROIMAGE, 2019, 194 : 1 - 11
  • [44] Unsupervised Domain Adaptation with Pseudo Shape Supervision for IC Image Segmentation
    Tee, Yee-Yang
    Hong, Xuenong
    Cheng, Deruo
    Lin, Tong
    Shi, Yiqiong
    Gwee, Bah-Hwee
    2024 IEEE INTERNATIONAL SYMPOSIUM ON THE PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS, IPFA 2024, 2024,
  • [45] Unsupervised Learning of Finite Mixtures Using Entropy Regularization and Its Application to Image Segmentation
    Lu, Zhiwu
    Peng, Yuxin
    Xiao, Jianguo
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 641 - 648
  • [46] Multi-modal unsupervised domain adaptation for semantic image segmentation
    Hu, Sijie
    Bonardi, Fabien
    Bouchafa, Samia
    Sidibe, Desire
    PATTERN RECOGNITION, 2023, 137
  • [47] Unsupervised domain adaptation via style adaptation and boundary enhancement for medical semantic segmentation
    Ge, Yisu
    Chen, Zhao-Min
    Zhang, Guodao
    Heidari, Ali Asghar
    Chen, Huiling
    Teng, Shu
    NEUROCOMPUTING, 2023, 550
  • [48] Unsupervised Domain Adaptation to Improve Image Segmentation Quality Both in the Source and Target Domain
    Bolte, Jan-Aike
    Kamp, Markus
    Breuer, Antonia
    Homoceanu, Silviu
    Schlicht, Peter
    Huger, Fabian
    Lipinski, Daniel
    Fingscheidt, Tim
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1404 - 1413
  • [49] Unsupervised Domain Adaptive Image Semantic Segmentation Based on Convolutional Fine-Grained Discriminant and Entropy Minimization
    Zhao, Xiaohao
    Tian, Lihua
    Li, Chen
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT II, 2022, 1701 : 106 - 124
  • [50] A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation
    Yao, Kai
    Su, Zixian
    Huang, Kaizhu
    Yang, Xi
    Sun, Jie
    Hussain, Amir
    Coenen, Frans
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (10) : 4976 - 4986