ADAPTIVE ENTROPY REGULARIZATION FOR UNSUPERVISED DOMAIN ADAPTATION IN MEDICAL IMAGE SEGMENTATION

被引:1
|
作者
Shi, Andrew [1 ]
Feng, Wei [1 ]
机构
[1] Beijing Airdoc Technol Co Ltd, Beijing, Peoples R China
关键词
Unsupervised domain adaptation; entropy regularization; medical image segmentation;
D O I
10.1109/ISBI53787.2023.10230637
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The unsupervised domain adaptation approach based on adversarial training has achieved promising performance in cross-modality medical image analysis tasks. However, deep learning models often produce overconfident but incorrect predictions, which is exacerbated in the presence of domain shifts. In this paper, we propose an adaptive entropy regularization framework for unsupervised domain adaptation in cross-modality medical image segmentation. Our framework consists of two key designs: pixel reliability assessment and entropy-based confidence regularization. We first assess pixel reliability based on the model's predictive consistency over a set of label-preserving randomly augmented image sets. We then propose an entropy-based confidence regularization strategy, which increases the confidence level by minimizing the information entropy of reliable pixels while maximizing the information entropy of unreliable pixels to diversify their predictions and alleviate the problem of overconfident but incorrect predictions. Extensive experiments on cross-modality cardiac structure segmentation tasks show that our approach outperforms other state-of-the-art UDA methods by a large margin. Our code will be released soon.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] OLVA: Optimal Latent Vector Alignment for Unsupervised Domain Adaptation in Medical Image Segmentation
    Al Chanti, Dawood
    Mateus, Diana
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 261 - 271
  • [22] Unsupervised Domain Adaptation with Dual-Scheme Fusion Network for Medical Image Segmentation
    Zou, Danbing
    Zhu, Qikui
    Yan, Pingkun
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3291 - 3298
  • [23] Style mixup enhanced disentanglement learning for unsupervised domain adaptation in medical image segmentation
    Cai, Zhuotong
    Xin, Jingmin
    You, Chenyu
    Shi, Peiwen
    Dong, Siyuan
    Dvornek, Nicha C.
    Zheng, Nanning
    Duncan, James S.
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [24] Semantic Consistent Unsupervised Domain Adaptation for Cross-Modality Medical Image Segmentation
    Zeng, Guodong
    Lerch, Till D.
    Schmaranzer, Florian
    Zheng, Guoyan
    Burger, Juergen
    Gerber, Kate
    Tannast, Moritz
    Siebenrock, Klaus
    Gerber, Nicolas
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 201 - 210
  • [25] Domain Specific Convolution and High Frequency Reconstruction Based Unsupervised Domain Adaptation for Medical Image Segmentation
    Hu, Shishuai
    Liao, Zehui
    Xia, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 650 - 659
  • [26] An Unsupervised Domain Adaptive Network Based on Category Prototype Alignment for Medical Image Segmentation
    Yu, Mei
    Xu, Zhiyuan
    Gao, Jie
    Yu, Jian
    Zhao, Mankun
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT III, 2023, 14088 : 168 - 179
  • [27] On a regularization of unsupervised domain adaptation in RKHS
    Gizewski, Elke R.
    Mayer, Lukas
    Moser, Bernhard A.
    Nguyen, Duc Hoan
    Pereverzyev, Sergiy, Jr.
    Pereverzyev, Sergei V.
    Shepeleva, Natalia
    Zellinger, Werner
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 57 : 201 - 227
  • [28] Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis
    Zhang, Yifan
    Wei, Ying
    Wu, Qingyao
    Zhao, Peilin
    Niu, Shuaicheng
    Huang, Junzhou
    Tan, Mingkui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7834 - 7844
  • [29] Histogram matching-enhanced adversarial learning for unsupervised domain adaptation in medical image segmentation
    Qian, Xiaoxue
    Shao, Hua-Chieh
    Li, Yunxiang
    Lu, Weiguo
    Zhang, You
    MEDICAL PHYSICS, 2025,
  • [30] S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation
    Liu, Luyan
    Zhang, Zhengdong
    Li, Shuai
    Ma, Kai
    Zheng, Yefeng
    MEDICAL IMAGE ANALYSIS, 2021, 74