Unsupervised Domain Adaptation with Pseudo Shape Supervision for IC Image Segmentation

被引:0
|
作者
Tee, Yee-Yang [1 ]
Hong, Xuenong [1 ]
Cheng, Deruo [1 ]
Lin, Tong [1 ]
Shi, Yiqiong [1 ]
Gwee, Bah-Hwee [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore, Singapore
关键词
image segmentation; domain adaptation; hardware assurance;
D O I
10.1109/IPFA61654.2024.10690992
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning (DL) techniques have achieved excellent results for IC image segmentation, a critical task in hardware assurance, but they require a large amount of labeled training data to perform well. Due to the domain shift problem of DL techniques, the data collection and data labeling process has to be repeated on new IC image datasets which is extremely time-consuming. Domain adaptation is a promising approach that aims to tackle the domain shift problem by implementing models that can be trained on an existing source dataset and then applied to a new target dataset effectively. However, the reported domain adaptation techniques do not fully utilize the unlabeled images for training or are prone to model collapse when training on unlabeled images. To address these challenges, we propose pseudo shape supervision (PSS), a domain adaptation framework for IC image segmentation that effectively leverages unlabeled target images for training whilst avoiding model collapse. Within our PSS, we propose a novel shape consistency loss for supervision on unlabeled images, by utilizing weak pseudo-labels that are generated by thresholding. Cross domain mixing is performed between the unlabeled target images and the synthetic images to reduce the domain gap. Our experimental results demonstrate that our proposed PSS outperforms the reported techniques on IC image datasets and our ablation studies show the importance of our novel shape consistency loss.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Unsupervised Domain Adaptation with Implicit Pseudo Supervision for Semantic Segmentation
    Xu, Wanyu
    Wang, Zengmao
    Bian, Wei
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [2] Unsupervised Domain Adaptation through Shape Modeling for Medical Image Segmentation
    Yao, Yuan
    Liu, Fengze
    Zhou, Zongwei
    Wang, Yan
    Shen, Wei
    Yuille, Alan
    Lu, Yongyi
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 1444 - 1458
  • [3] Review of Unsupervised Domain Adaptation in Medical Image Segmentation
    Hu, Wei
    Xu, Qiaozhi
    Ge, Xiangwei
    Yu, Lei
    Computer Engineering and Applications, 2024, 60 (06) : 10 - 26
  • [4] Unsupervised domain adaptation for histopathology image segmentation with incomplete labels
    Zhou H.
    Wang Y.
    Zhang B.
    Zhou C.
    Vonsky M.S.
    Mitrofanova L.B.
    Zou D.
    Li Q.
    Computers in Biology and Medicine, 2024, 171
  • [5] Scale variance minimization for unsupervised domain adaptation in image segmentation
    Guan, Dayan
    Huang, Jiaxing
    Lu, Shijian
    Xiao, Aoran
    PATTERN RECOGNITION, 2021, 112
  • [6] Rethinking Disentanglement in Unsupervised Domain Adaptation for Medical Image Segmentation
    Wang, Yan
    Chen, Yixin
    Zhang, Yingying
    Zhu, Haogang
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [7] Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation
    Chen, Lang
    Bian, Yun
    Zeng, Jianbin
    Meng, Qingquan
    Zhu, Weifang
    Shi, Fei
    Shao, Chengwei
    Chen, Xinjian
    Xiang, Dehui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4882 - 4895
  • [8] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [9] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    Medical Image Analysis, 2022, 82
  • [10] Unsupervised Domain Adaptation in LiDAR Semantic Segmentation with Self-Supervision and Gated Adapters
    Rochan, Mrigank
    Aich, Shubhra
    Corral-Soto, Eduardo R.
    Nabatchian, Amir
    Liu, Bingbing
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 2649 - 2655