Digital polycrystalline microstructure generation using diffusion probabilistic models

被引:6
|
作者
Fernandez-Zelaia, Patxi [1 ]
Cheng, Jiahao [1 ]
Mayeur, Jason [1 ]
Ziabari, Amir Koushyar [2 ]
Kirka, Michael M. [1 ]
机构
[1] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN 37748 USA
[2] Oak Ridge Natl Lab, Electrificat & Energy Infrastruct Div, Oak Ridge, TN USA
关键词
Microstructure; Machine learning; Generative modeling; ICME;
D O I
10.1016/j.mtla.2023.101976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate micromechanical simulation of polycrystalline materials requires a realistic digital representation of the grain scale microstructure. This work demonstrates the use of a generative diffusion probabilistic model for synthesizing single phase polycrystalline realizations. The model performs well and is capable of producing realistic microstructures consisting of not just simple equiaxed structures but also structures exhibiting more complex spatial arrangements. Masked microstructure generation reveals that the model is context aware of morphological descriptors which may be encoded in the latent space. Training on more diverse data sets, with scaled up architectures, may enable development of future models capable of synthesizing even more complex microstructural features.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Deep Learning Approach for Stochastic Structural Plane Generation Based on Denoising Diffusion Probabilistic Models
    Meng, Han
    Qi, Xiaoyu
    Mei, Gang
    MATHEMATICS, 2024, 12 (13)
  • [42] DifFIQA: Face Image Quality Assessment Using Denoising Diffusion Probabilistic Models
    Babnik, Ziga
    Peer, Peter
    Struc, Vitomir
    2023 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS, IJCB, 2023,
  • [43] Enhanced conformational space exploration for biomolecules using denoising diffusion probabilistic models
    Benayad, Zakarya
    Stirnemann, Guillaume
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 296A - 297A
  • [44] Generative modeling and augmentation of EEG signals using improved diffusion probabilistic models
    Torma, Szabolcs
    Szegletes, Luca
    JOURNAL OF NEURAL ENGINEERING, 2025, 22 (01)
  • [45] AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise
    Wyatt, Julian
    Leach, Adam
    Schmon, Sebastian M.
    Willcocks, Chris G.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 649 - 655
  • [46] Predicting the Radiation Field of Molecular Clouds Using Denoising Diffusion Probabilistic Models
    Xu, Duo
    Offner, Stella S. R.
    Gutermuth, Robert
    Grudic, Michael Y.
    Guszejnov, David
    Hopkins, Philip F.
    ASTROPHYSICAL JOURNAL, 2023, 958 (01):
  • [47] Statistically conditioned polycrystal generation using denoising diffusion models
    Buzzy, Michael O.
    Robertson, Andreas E.
    Kalidindi, Surya R.
    ACTA MATERIALIA, 2024, 267
  • [48] Taming Diffusion Probabilistic Models for Character Control
    Chen, Rui
    Shi, Mingyi
    Huang, Shaoli
    Tan, Ping
    Komura, Taku
    Chen, Xuelin
    PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS, 2024,
  • [49] DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models
    Yang, Tao
    Wang, Yuwang
    Lu, Yan
    Zheng, Nanning
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [50] Diffusion Probabilistic Models for Structured Node Classification
    Jang, Hyosoon
    Park, Seonghyun
    Mo, Sangwoo
    Ahn, Sungsoo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,