Digital polycrystalline microstructure generation using diffusion probabilistic models

被引:6
|
作者
Fernandez-Zelaia, Patxi [1 ]
Cheng, Jiahao [1 ]
Mayeur, Jason [1 ]
Ziabari, Amir Koushyar [2 ]
Kirka, Michael M. [1 ]
机构
[1] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN 37748 USA
[2] Oak Ridge Natl Lab, Electrificat & Energy Infrastruct Div, Oak Ridge, TN USA
关键词
Microstructure; Machine learning; Generative modeling; ICME;
D O I
10.1016/j.mtla.2023.101976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate micromechanical simulation of polycrystalline materials requires a realistic digital representation of the grain scale microstructure. This work demonstrates the use of a generative diffusion probabilistic model for synthesizing single phase polycrystalline realizations. The model performs well and is capable of producing realistic microstructures consisting of not just simple equiaxed structures but also structures exhibiting more complex spatial arrangements. Masked microstructure generation reveals that the model is context aware of morphological descriptors which may be encoded in the latent space. Training on more diverse data sets, with scaled up architectures, may enable development of future models capable of synthesizing even more complex microstructural features.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Speech-to-Face Conversion Using Denoising Diffusion Probabilistic Models
    Kato, Shuhei
    Hashimoto, Taiichi
    INTERSPEECH 2023, 2023, : 2188 - 2192
  • [32] Advanced image generation for cancer using diffusion models
    Kidder, Benjamin L.
    BIOLOGY METHODS & PROTOCOLS, 2024, 9 (01):
  • [33] Microstructure reconstruction using diffusion-based generative models
    Lee, Kang-Hyun
    Yun, Gun Jin
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (18) : 4443 - 4461
  • [34] Learning to Schedule in Diffusion Probabilistic Models
    Wang, Yunke
    Wang, Xiyu
    Anh-Dung Dinh
    Du, Bo
    Xu, Chang
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2478 - 2488
  • [35] Improved Denoising Diffusion Probabilistic Models
    Nichol, Alex
    Dhariwal, Prafulla
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [36] DIFFUSION-MODELS WITH MICROSTRUCTURE
    SHOWALTER, RE
    TRANSPORT IN POROUS MEDIA, 1991, 6 (5-6) : 567 - 580
  • [37] Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations
    Pereira, Luan D. L.
    Yahyaoui, Imene
    Fiorotti, Rodrigo
    de Menezes, Luiza S.
    Fardin, Jussara F.
    Rocha, Helder R. O.
    Tadeo, Fernando
    APPLIED ENERGY, 2022, 307
  • [38] Enhancing ML model accuracy for Digital VLSI circuits using diffusion models: A study on synthetic data generation
    Srivastava, Prasha
    Kumar, Pawan
    Abbas, Zia
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [39] Generation of cement paste microstructure using machine learning models
    Liang, Minfei
    Feng, Kun
    He, Shan
    Gan, Yidong
    Zhang, Yu
    Schlangen, Erik
    Savija, Branko
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2025, 21
  • [40] Denoising diffusion probabilistic models for generation of realistic fully-annotated microscopy image datasets
    Eschweiler, Dennis
    Yilmaz, Rueveyda
    Baumann, Matisse
    Laube, Ina
    Roy, Rijo
    Jose, Abin
    Brueckner, Daniel
    Stegmaier, Johannes
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)