Digital polycrystalline microstructure generation using diffusion probabilistic models

被引:6
|
作者
Fernandez-Zelaia, Patxi [1 ]
Cheng, Jiahao [1 ]
Mayeur, Jason [1 ]
Ziabari, Amir Koushyar [2 ]
Kirka, Michael M. [1 ]
机构
[1] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN 37748 USA
[2] Oak Ridge Natl Lab, Electrificat & Energy Infrastruct Div, Oak Ridge, TN USA
关键词
Microstructure; Machine learning; Generative modeling; ICME;
D O I
10.1016/j.mtla.2023.101976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate micromechanical simulation of polycrystalline materials requires a realistic digital representation of the grain scale microstructure. This work demonstrates the use of a generative diffusion probabilistic model for synthesizing single phase polycrystalline realizations. The model performs well and is capable of producing realistic microstructures consisting of not just simple equiaxed structures but also structures exhibiting more complex spatial arrangements. Masked microstructure generation reveals that the model is context aware of morphological descriptors which may be encoded in the latent space. Training on more diverse data sets, with scaled up architectures, may enable development of future models capable of synthesizing even more complex microstructural features.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Controlling Epidemic Spread using Probabilistic Diffusion Models on Networks
    Babay, Amy
    Dinitz, Michael
    Srinivasan, Aravind
    Tsepenekas, Leonidas
    Vullikanti, Anil
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [22] Wrapped Phase Denoising Using Denoising Diffusion Probabilistic Models
    Yang, Shuohang
    Gao, Jian
    Zhang, Jiayi
    Xu, Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [23] Guided Open Story Generation Using Probabilistic Graphical Models
    Gandhi, Sagar
    Harrison, Brent
    PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON THE FOUNDATIONS OF DIGITAL GAMES (FDG'19), 2019,
  • [24] Realistic Trajectory Generation using Simple Probabilistic Language Models
    Mohammed, Hayat Sultan
    Nascimento, Mario A.
    PROCEEDINGS OF THE 7TH ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON GEOSPATIAL SIMULATION, GEOSIM 2024, 2024, : 21 - 24
  • [25] Denoising diffusion probabilistic models for probabilistic energy forecasting
    Capel, Esteban Hernandez
    Dumas, Jonathan
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [26] Diffusion Probabilistic Modeling for Video Generation
    Yang, Ruihan
    Srivastava, Prakhar
    Mandt, Stephan
    ENTROPY, 2023, 25 (10)
  • [27] Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models
    Asgariandehkordi, Hojat
    Goudarzi, Sobhan
    Sharifzadeh, Mostafa
    Basarab, Adrian
    Rivaz, Hassan
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2024, 71 (11) : 1526 - 1539
  • [28] Generation of Synthetic Echocardiograms Using Video Diffusion Models
    Olive Pellicer, Alexandre
    Yadav, Amit Kumar Singh
    Bhagtani, Kratika
    Xiang, Ziyue
    Pizlo, Zygmunt
    Gradus-Pizlo, Irmina
    Delp, Edward J.
    2024 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, SSIAI, 2024, : 33 - 36
  • [29] Generative Approach for Probabilistic Human Mesh Recovery using Diffusion Models
    Cho, Hanbyel
    Kim, Junmo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 4185 - 4190
  • [30] A Study on Webtoon Generation Using CLIP and Diffusion Models
    Yu, Kyungho
    Kim, Hyoungju
    Kim, Jeongin
    Chun, Chanjun
    Kim, Pankoo
    ELECTRONICS, 2023, 12 (18)