Digital polycrystalline microstructure generation using diffusion probabilistic models

被引:6
|
作者
Fernandez-Zelaia, Patxi [1 ]
Cheng, Jiahao [1 ]
Mayeur, Jason [1 ]
Ziabari, Amir Koushyar [2 ]
Kirka, Michael M. [1 ]
机构
[1] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN 37748 USA
[2] Oak Ridge Natl Lab, Electrificat & Energy Infrastruct Div, Oak Ridge, TN USA
关键词
Microstructure; Machine learning; Generative modeling; ICME;
D O I
10.1016/j.mtla.2023.101976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate micromechanical simulation of polycrystalline materials requires a realistic digital representation of the grain scale microstructure. This work demonstrates the use of a generative diffusion probabilistic model for synthesizing single phase polycrystalline realizations. The model performs well and is capable of producing realistic microstructures consisting of not just simple equiaxed structures but also structures exhibiting more complex spatial arrangements. Masked microstructure generation reveals that the model is context aware of morphological descriptors which may be encoded in the latent space. Training on more diverse data sets, with scaled up architectures, may enable development of future models capable of synthesizing even more complex microstructural features.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Predictive microstructure image generation using denoising diffusion probabilistic models
    Azqadan, Erfan
    Jahed, Hamid
    Arami, Arash
    ACTA MATERIALIA, 2023, 261
  • [2] Synthetic ECG Signal Generation Using Probabilistic Diffusion Models
    Adib, Edmonmd
    Fernandez, Amanda S.
    Afghah, Fatemeh
    Prevost, John J.
    IEEE ACCESS, 2023, 11 : 75818 - 75828
  • [3] Discrete Diffusion Probabilistic Models for Symbolic Music Generation
    Plasser, Matthias
    Peter, Silvan
    Widmer, Gerhard
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 5842 - 5850
  • [4] Handwritten Signature Generation Using Denoising Diffusion Probabilistic Models with Auxiliary Classification Processes
    Hong, Dong-Jin
    Chang, Won-Du
    Cha, Eui-Young
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [5] Annotated Biomedical Video Generation Using Denoising Diffusion Probabilistic Models and Flow Fields
    Yilmaz, Rueveyda
    Eschweiler, Dennis
    Stegmaier, Johannes
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2024, 2025, 15187 : 197 - 207
  • [6] Generation Of Synthetic Clutter Signals With Denoising Diffusion Probabilistic Models
    Sosedko, Taras Alexander
    Matthes, Dietmar
    Knott, Peter
    2024 INTERNATIONAL RADAR SYMPOSIUM, IRS 2024, 2024, : 30 - 32
  • [7] Ultrasonic characterization of defects in polycrystalline materials based on TFM image reconstruction using denoising diffusion probabilistic models
    Guo, Changrong
    Ding, Yue
    Cui, Hua
    Xu, Jianfeng
    Bai, Long
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [8] Reliable precipitation nowcasting using probabilistic diffusion models
    Nai, Congyi
    Pan, Baoxiang
    Chen, Xi
    Tang, Qiuhong
    Ni, Guangheng
    Duan, Qingyun
    Lu, Bo
    Xiao, Ziniu
    Liu, Xingcai
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (03)
  • [9] RePaint: Inpainting using Denoising Diffusion Probabilistic Models
    Lugmayr, Andreas
    Danelljan, Martin
    Romero, Andres
    Yu, Fisher
    Timofte, Radu
    Van Gool, Luc
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11451 - 11461
  • [10] LayoutDiffusion: Improving Graphic Layout Generation by Discrete Diffusion Probabilistic Models
    Zhang, Junyi
    Guo, Jiaqi
    Sun, Shizhao
    Lou, Jian-Guang
    Zhang, Dongmei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 7192 - 7202