Non-negative tensor factorization workflow for time series biomedical data

被引:0
|
作者
Tsuyuzaki, Koki [1 ,2 ]
Yoshida, Naoki [3 ]
Ishikawa, Tetsuo [3 ,4 ,5 ]
Goshima, Yuki [4 ]
Kawakami, Eiryo [3 ,4 ,6 ,7 ]
机构
[1] RIKEN Ctr Biosyst Dynam Res, Lab Bioinformat Res, Wako, Saitama 3510198, Japan
[2] Japan Sci & Technol Agcy, PRESTO, 7 Gobancho,Chiyoda ku, Tokyo 1020075, Japan
[3] Chiba Univ, Grad Sch Med, Dept Artificial Intelligence Med, Chiba 2608670, Japan
[4] RIKEN Informat R&D & Strategy Headquarters, Adv Data Sci Project ADSP, Yokohama, Kanagawa 2300045, Japan
[5] Keio Univ, Dept Extended Intelligence Med, Ishii Ishibashi Lab, Sch Med, Shinjuku Ku, Tokyo 1608582, Japan
[6] Japanese Fdn Canc Res JFCR, NEXT Ganken Program, Tokyo 1358550, Japan
[7] Chiba Univ, Inst Adv Acad Res IAAR, Chiba 2608670, Japan
来源
STAR PROTOCOLS | 2023年 / 4卷 / 03期
基金
日本科学技术振兴机构;
关键词
Bioinformatics; Computer sciences; Health Sciences;
D O I
10.1016/j.xpro.2023.102318
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Non-negative tensor factorization (NTF) enables the extraction of a small number of latent components from high-dimensional biomedical data. However, NTF requires many steps, which is a hurdle to implementation. Here, we provide a protocol for TensorLyCV, an easy to run and reproducible NTF analysis pipeline using Snake make workflow management system and Docker container. Using vaccine adverse reaction data as an example, we describe steps for data processing, tensor decomposition, optimal rank parameter estimation, and visualization of factor matrices. For complete details on the use and execution of this protocol, please refer to Kei Ikeda et al.1
引用
收藏
页数:16
相关论文
共 50 条
  • [41] On Ambisonic Source Separation With Spatially Informed Non-Negative Tensor Factorization
    Guzik, Mateusz
    Kowalczyk, Konrad
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 3238 - 3255
  • [42] Model Selection for Non-Negative Tensor Factorization with Minimum Description Length
    Fu, Yunhui
    Matsushima, Shin
    Yamanishi, Kenji
    ENTROPY, 2019, 21 (07)
  • [43] Sparse non-negative tensor factorization using columnwise coordinate descent
    Liu, Ji
    Liu, Jun
    Wonka, Peter
    Ye, Jieping
    PATTERN RECOGNITION, 2012, 45 (01) : 649 - 656
  • [44] Application of Non-Negative Tensor Factorization in Intelligent Fault Diagnosis of Gearboxes
    Peng, Sen
    Xu, Feiyun
    Ji, Minping
    Hu, Jianzhong
    ADVANCED MANUFACTURING SYSTEMS, PTS 1-3, 2011, 201-203 : 2132 - 2143
  • [45] FLEXIBLE HALS ALGORITHMS FOR SPARSE NON-NEGATIVE MATRIX/TENSOR FACTORIZATION
    Cichocki, Andrzej
    Phan, Anh Huy
    Caiafa, Cesar
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 73 - 78
  • [46] Spatial feature extraction non-negative tensor factorization for hyperspectral unmixing
    Wang, Jin-Ju
    Wang, Ding-Cheng
    Huang, Ting-Zhu
    Huang, Jie
    APPLIED MATHEMATICAL MODELLING, 2022, 103 : 18 - 35
  • [47] Non-negative matrix Factorization for Toxicogenomic Literature Data
    Kang, Byeong-Chul
    Kim, Hyung-Yong
    Lee, Tae-ho
    Shin, Ga-Hee
    Youn, Seok-Joo
    MOLECULAR & CELLULAR TOXICOLOGY, 2009, 5 (03) : 89 - 89
  • [48] Convex Hull Convolutive Non-negative Matrix Factorization for Uncovering Temporal Patterns in Multivariate Time-Series Data
    Vaz, Colin
    Toutios, Asterios
    Narayanan, Shrikanth
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 963 - 967
  • [49] Algorithms for Non-Negative Matrix Factorization on Noisy Data With Negative Values
    Green, Dylan
    Bailey, Stephen
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 5187 - 5197
  • [50] Stereophonic Music Separation Based on Non-negative Tensor Factorization with Cepstrum Regularization
    Seki, Shogo
    Toda, Tomoki
    Takeda, Kazuya
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 981 - 985