Non-negative tensor factorization workflow for time series biomedical data

被引:0
|
作者
Tsuyuzaki, Koki [1 ,2 ]
Yoshida, Naoki [3 ]
Ishikawa, Tetsuo [3 ,4 ,5 ]
Goshima, Yuki [4 ]
Kawakami, Eiryo [3 ,4 ,6 ,7 ]
机构
[1] RIKEN Ctr Biosyst Dynam Res, Lab Bioinformat Res, Wako, Saitama 3510198, Japan
[2] Japan Sci & Technol Agcy, PRESTO, 7 Gobancho,Chiyoda ku, Tokyo 1020075, Japan
[3] Chiba Univ, Grad Sch Med, Dept Artificial Intelligence Med, Chiba 2608670, Japan
[4] RIKEN Informat R&D & Strategy Headquarters, Adv Data Sci Project ADSP, Yokohama, Kanagawa 2300045, Japan
[5] Keio Univ, Dept Extended Intelligence Med, Ishii Ishibashi Lab, Sch Med, Shinjuku Ku, Tokyo 1608582, Japan
[6] Japanese Fdn Canc Res JFCR, NEXT Ganken Program, Tokyo 1358550, Japan
[7] Chiba Univ, Inst Adv Acad Res IAAR, Chiba 2608670, Japan
来源
STAR PROTOCOLS | 2023年 / 4卷 / 03期
基金
日本科学技术振兴机构;
关键词
Bioinformatics; Computer sciences; Health Sciences;
D O I
10.1016/j.xpro.2023.102318
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Non-negative tensor factorization (NTF) enables the extraction of a small number of latent components from high-dimensional biomedical data. However, NTF requires many steps, which is a hurdle to implementation. Here, we provide a protocol for TensorLyCV, an easy to run and reproducible NTF analysis pipeline using Snake make workflow management system and Docker container. Using vaccine adverse reaction data as an example, we describe steps for data processing, tensor decomposition, optimal rank parameter estimation, and visualization of factor matrices. For complete details on the use and execution of this protocol, please refer to Kei Ikeda et al.1
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Time Series Electricity Consumption Analysis using Non-negative Matrix Factorization
    Kusaba, Akira
    Kuboyama, Tetsuji
    Hashimoto, Takako
    2019 IEEE 10TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2019), 2019, : 240 - 245
  • [32] Non-negative sub-tensor ensemble factorization (NsTEF) algorithm. A new incremental tensor factorization for large data sets
    Vigneron, Vincent
    Kodewitz, Andreas
    da Costa, Michele Nazareth
    Tome, Ana Maria
    Langlang, Elmar
    SIGNAL PROCESSING, 2018, 144 : 77 - 86
  • [33] Non-negative Matrix and Tensor Factorization Based Classification of Clinical Microarray Gene Expression Data
    Li, Yifeng
    Ngom, Alioune
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 438 - 443
  • [34] Multichannel Audio Upmixing by Time-Frequency Filtering Using Non-Negative Tensor Factorization
    Nikunen, Joonas
    Virtanen, Tuomas
    Vilermo, Miikka
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2012, 60 (10): : 794 - 806
  • [35] Time-Warped Sparse Non-negative Factorization for Functional Data Analysis
    Zhang C.
    Hoi S.C.H.
    Tsung F.
    ACM Transactions on Knowledge Discovery from Data, 2020, 14 (06)
  • [36] Graph-based non-negative tensor factorization for image classification
    Luo, B. (luobin@ahu.edu.cn), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (10):
  • [37] MULTICHANNEL AUDIO UPMIXING BASED ON NON-NEGATIVE TENSOR FACTORIZATION REPRESENTATION
    Nikunen, J.
    Virtanen, T.
    Vilermo, M.
    2011 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2011, : 33 - 36
  • [38] A Non-negative Tensor Factorization Approach to Feature Extraction for Image Analysis
    Ang, Andersen Man Shun
    Hung, Yeung Sam
    Zhang, Zhiguo
    2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 168 - 171
  • [39] Binaural Localization of Multiple Sound Sources by Non-Negative Tensor Factorization
    Benaroya, Elie Laurent
    Obin, Nicolas
    Liuni, Marco
    Roebel, Axel
    Raumel, Wilson
    Argentieri, Sylvain
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (06) : 1068 - 1078
  • [40] Robust Video Hashing with Non-negative Tensor Factorization for Copy Detection
    Yu, Mengzhu
    Tang, Zhenjun
    Zhuang, Huijiang
    Liang, Xiaoping
    Li, Zhixin
    Zhang, Xianquan
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 1094 - 1098