Non-negative tensor factorization workflow for time series biomedical data

被引:0
|
作者
Tsuyuzaki, Koki [1 ,2 ]
Yoshida, Naoki [3 ]
Ishikawa, Tetsuo [3 ,4 ,5 ]
Goshima, Yuki [4 ]
Kawakami, Eiryo [3 ,4 ,6 ,7 ]
机构
[1] RIKEN Ctr Biosyst Dynam Res, Lab Bioinformat Res, Wako, Saitama 3510198, Japan
[2] Japan Sci & Technol Agcy, PRESTO, 7 Gobancho,Chiyoda ku, Tokyo 1020075, Japan
[3] Chiba Univ, Grad Sch Med, Dept Artificial Intelligence Med, Chiba 2608670, Japan
[4] RIKEN Informat R&D & Strategy Headquarters, Adv Data Sci Project ADSP, Yokohama, Kanagawa 2300045, Japan
[5] Keio Univ, Dept Extended Intelligence Med, Ishii Ishibashi Lab, Sch Med, Shinjuku Ku, Tokyo 1608582, Japan
[6] Japanese Fdn Canc Res JFCR, NEXT Ganken Program, Tokyo 1358550, Japan
[7] Chiba Univ, Inst Adv Acad Res IAAR, Chiba 2608670, Japan
来源
STAR PROTOCOLS | 2023年 / 4卷 / 03期
基金
日本科学技术振兴机构;
关键词
Bioinformatics; Computer sciences; Health Sciences;
D O I
10.1016/j.xpro.2023.102318
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Non-negative tensor factorization (NTF) enables the extraction of a small number of latent components from high-dimensional biomedical data. However, NTF requires many steps, which is a hurdle to implementation. Here, we provide a protocol for TensorLyCV, an easy to run and reproducible NTF analysis pipeline using Snake make workflow management system and Docker container. Using vaccine adverse reaction data as an example, we describe steps for data processing, tensor decomposition, optimal rank parameter estimation, and visualization of factor matrices. For complete details on the use and execution of this protocol, please refer to Kei Ikeda et al.1
引用
收藏
页数:16
相关论文
共 50 条
  • [21] CLASSIFICATION OF POLSAR IMAGE WITH NON-NEGATIVE TENSOR FACTORIZATION APPROACH
    Gou, Shuiping
    Chen, Wenshuai
    Liu, Yizhou
    Li, Pengcheng
    Jiao, Licheng
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1150 - 1153
  • [22] Non-negative Matrix Factorization for Binary Data
    Larsen, Jacob Sogaard
    Clemmensen, Line Katrine Harder
    2015 7TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (IC3K), 2015, : 555 - 563
  • [23] Non-negative Einstein tensor factorization for unmixing hyperspectral images
    El Hachimi, Anas
    Jbilou, Khalide
    Ratnani, Ahmed
    NUMERICAL ALGORITHMS, 2025,
  • [24] Non-Negative Tensor Factorization Applied to Music Genre Classification
    Benetos, Emmanouil
    Kotropoulos, Constantine
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (08): : 1955 - 1967
  • [25] QUASI-ORTHOGONALIZATION FOR ALTERNATING NON-NEGATIVE TENSOR FACTORIZATION
    Grasedyck, Lars
    Klever, Maren
    Kraemer, Sebastian
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2024, 62 : 22 - 57
  • [26] A sufficient condition for the unique solution of non-negative tensor factorization
    Sumi, Toshio
    Sakata, Toshio
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 113 - +
  • [27] Ensemble Non-negative Matrix Factorization for Clustering Biomedical Documents
    Zhu, Shanfeng
    Yuan, Wei
    Wang, Fei
    OPTIMIZATION AND SYSTEMS BIOLOGY, PROCEEDINGS, 2008, 9 : 358 - 364
  • [28] NEIGHBORHOOD PRESERVING NON-NEGATIVE TENSOR FACTORIZATION FOR IMAGE REPRESENTATION
    Wang, Yu-Xiong
    Gui, Liang-Yan
    Zhang, Yu-Jin
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3389 - 3392
  • [29] VARIATIONAL BAYESIAN PARTIALLY OBSERVED NON-NEGATIVE TENSOR FACTORIZATION
    Hinrich, Jesper L.
    Nielsen, Soren F. V.
    Madsen, Kristoffer H.
    Morup, Morten
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [30] Time Series Electricity Consumption Analysis using Non-negative Matrix Factorization
    Gakushuin University, Computer Centre, Tokyo, Japan
    不详
    IEEE Int. Conf. Aware. Sci. Technol., iCAST - Proc., 2019,