Non-negative tensor factorization workflow for time series biomedical data

被引:0
|
作者
Tsuyuzaki, Koki [1 ,2 ]
Yoshida, Naoki [3 ]
Ishikawa, Tetsuo [3 ,4 ,5 ]
Goshima, Yuki [4 ]
Kawakami, Eiryo [3 ,4 ,6 ,7 ]
机构
[1] RIKEN Ctr Biosyst Dynam Res, Lab Bioinformat Res, Wako, Saitama 3510198, Japan
[2] Japan Sci & Technol Agcy, PRESTO, 7 Gobancho,Chiyoda ku, Tokyo 1020075, Japan
[3] Chiba Univ, Grad Sch Med, Dept Artificial Intelligence Med, Chiba 2608670, Japan
[4] RIKEN Informat R&D & Strategy Headquarters, Adv Data Sci Project ADSP, Yokohama, Kanagawa 2300045, Japan
[5] Keio Univ, Dept Extended Intelligence Med, Ishii Ishibashi Lab, Sch Med, Shinjuku Ku, Tokyo 1608582, Japan
[6] Japanese Fdn Canc Res JFCR, NEXT Ganken Program, Tokyo 1358550, Japan
[7] Chiba Univ, Inst Adv Acad Res IAAR, Chiba 2608670, Japan
来源
STAR PROTOCOLS | 2023年 / 4卷 / 03期
基金
日本科学技术振兴机构;
关键词
Bioinformatics; Computer sciences; Health Sciences;
D O I
10.1016/j.xpro.2023.102318
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Non-negative tensor factorization (NTF) enables the extraction of a small number of latent components from high-dimensional biomedical data. However, NTF requires many steps, which is a hurdle to implementation. Here, we provide a protocol for TensorLyCV, an easy to run and reproducible NTF analysis pipeline using Snake make workflow management system and Docker container. Using vaccine adverse reaction data as an example, we describe steps for data processing, tensor decomposition, optimal rank parameter estimation, and visualization of factor matrices. For complete details on the use and execution of this protocol, please refer to Kei Ikeda et al.1
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Non-negative Multiple Tensor Factorization
    Takeuchi, Koh
    Tomioka, Ryota
    Ishiguro, Katsuhiko
    Kimura, Akisato
    Sawada, Hiroshi
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 1199 - 1204
  • [2] Controlling sparseness in non-negative tensor factorization
    Heiler, M
    Schnörr, C
    COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 56 - 67
  • [3] Non-negative tensor factorization using α and β divergences
    Cichocki, Andrzej
    Zdunek, Rafal
    Choi, Seungjin
    Plemmons, Robert
    Amari, Shun-ichi
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1393 - +
  • [4] CitySpectrum: A Non-negative Tensor Factorization Approach
    Fan, Zipei
    Song, Xuan
    Shibasaki, Ryosuke
    UBICOMP'14: PROCEEDINGS OF THE 2014 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, 2014, : 213 - 223
  • [5] Non-negative Tensor Factorization for Speech Enhancement
    He, Liang
    Zhang, Weiqiang
    Shi, Mengnan
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127
  • [6] Scalable Bayesian Non-negative Tensor Factorization for Massive Count Data
    Hu, Changwei
    Rai, Piyush
    Chen, Changyou
    Harding, Matthew
    Carin, Lawrence
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT II, 2015, 9285 : 53 - 70
  • [7] FacetCube: a general framework for non-negative tensor factorization
    Chi, Yun
    Zhu, Shenghuo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 37 (01) : 155 - 179
  • [8] Deep non-negative tensor factorization with multi-way EMG data
    Tan, Qi
    Yang, Pei
    Wen, Guihua
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 1307 - 1317
  • [9] FacetCube: a general framework for non-negative tensor factorization
    Yun Chi
    Shenghuo Zhu
    Knowledge and Information Systems, 2013, 37 : 155 - 179
  • [10] Deep non-negative tensor factorization with multi-way EMG data
    Qi Tan
    Pei Yang
    Guihua Wen
    Neural Computing and Applications, 2022, 34 : 1307 - 1317