Nash Equilibrium Problems of Polynomials

被引:4
|
作者
Nie, Jiawang [1 ]
Tang, Xindong [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Nash equilibrium; polynomial optimization; Moment-SOS relaxation; Lagrange multiplier expression; tight relaxation; MOMENT-SOS HIERARCHY; RELAXATION ALGORITHMS; OPTIMIZATION; SQUARES; COMPUTATION; TSSOS; SUMS;
D O I
10.1287/moor.2022.0334
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies Nash equilibrium problems that are given by polynomial functions. We formulate efficient polynomial optimization problems for computing Nash equilibria. The Moment-sum-of-squares relaxations are used to solve them. Under generic assumptions, the method can find a Nash equilibrium, if there is one. Moreover, it can find all Nash equilibria if there are finitely many ones of them. The method can also detect nonexistence if there is no Nash equilibrium.
引用
收藏
页码:1 / 26
页数:27
相关论文
共 50 条
  • [31] α-well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints
    Lignola, M. Beatrice
    Morgan, Jacqueline
    JOURNAL OF GLOBAL OPTIMIZATION, 2006, 36 (03) : 439 - 459
  • [32] α-Well-posedness for Nash Equilibria and For Optimization Problems with Nash Equilibrium Constraints
    M. Beatrice. Lignola
    Jacqueline Morgan
    Journal of Global Optimization, 2006, 36 : 439 - 459
  • [33] Partial penalization for the solution of generalized Nash equilibrium problems
    Facchinei, Francisco
    Lampariello, Lorenzo
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 50 (01) : 39 - 57
  • [34] Stochastic Nash Equilibrium Problems: Models, Analysis, and Algorithms
    Lei, Jinlong
    Shanbhag, Uday V.
    IEEE CONTROL SYSTEMS MAGAZINE, 2022, 42 (04): : 103 - 124
  • [35] Existence of Projected Solutions for Generalized Nash Equilibrium Problems
    Orestes Bueno
    John Cotrina
    Journal of Optimization Theory and Applications, 2021, 191 : 344 - 362
  • [36] Partial penalization for the solution of generalized Nash equilibrium problems
    Francisco Facchinei
    Lorenzo Lampariello
    Journal of Global Optimization, 2011, 50 : 39 - 57
  • [37] Equilibrium problems associated with fast decreasing polynomials
    Kuijlaars, ABJ
    Dragnev, PD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) : 1065 - 1074
  • [38] Constrained Weak Nash-Type Equilibrium Problems
    Shuai, W. C.
    Xiang, K. L.
    Zhang, W. Y.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [39] A BARRIER FUNCTION METHOD FOR GENERALIZED NASH EQUILIBRIUM PROBLEMS
    Hou, Jian
    Zhang, Li-Wei
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (04) : 1091 - 1108
  • [40] Infinitely split Nash equilibrium problems in repeated games
    Li J.
    Fixed Point Theory and Applications, 2018 (1)