Nash Equilibrium Problems of Polynomials

被引:4
|
作者
Nie, Jiawang [1 ]
Tang, Xindong [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Nash equilibrium; polynomial optimization; Moment-SOS relaxation; Lagrange multiplier expression; tight relaxation; MOMENT-SOS HIERARCHY; RELAXATION ALGORITHMS; OPTIMIZATION; SQUARES; COMPUTATION; TSSOS; SUMS;
D O I
10.1287/moor.2022.0334
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies Nash equilibrium problems that are given by polynomial functions. We formulate efficient polynomial optimization problems for computing Nash equilibria. The Moment-sum-of-squares relaxations are used to solve them. Under generic assumptions, the method can find a Nash equilibrium, if there is one. Moreover, it can find all Nash equilibria if there are finitely many ones of them. The method can also detect nonexistence if there is no Nash equilibrium.
引用
收藏
页码:1 / 26
页数:27
相关论文
共 50 条
  • [41] On solving generalized Nash equilibrium problems via optimization
    Barbara Panicucci
    Massimo Pappalardo
    Mauro Passacantando
    Optimization Letters, 2009, 3 : 419 - 435
  • [42] Solving linear generalized Nash equilibrium problems numerically
    Dreves, Axel
    Sudermann-Merx, Nathan
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (05): : 1036 - 1063
  • [43] Nash Equilibrium Problems with Congestion Costs and Shared Constraints
    Yin, Huibing
    Shanbhag, Uday V.
    Mehta, Prashant G.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4649 - 4654
  • [44] How to Select a Solution in Generalized Nash Equilibrium Problems
    Axel Dreves
    Journal of Optimization Theory and Applications, 2018, 178 : 973 - 997
  • [45] How to Select a Solution in Generalized Nash Equilibrium Problems
    Dreves, Axel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (03) : 973 - 997
  • [46] Convex generalized Nash equilibrium problems and polynomial optimization
    Nie, Jiawang
    Tang, Xindong
    MATHEMATICAL PROGRAMMING, 2023, 198 (02) : 1485 - 1518
  • [47] On Intrinsic Complexity of Nash Equilibrium Problems and Bilevel Optimization
    D. Dorsch
    H. T. Jongen
    V. Shikhman
    Journal of Optimization Theory and Applications, 2013, 159 : 606 - 634
  • [48] An extremum seeking algorithm for monotone Nash equilibrium problems
    Krilasevic, Suad
    Grammatico, Sergio
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1232 - 1237
  • [49] EXISTENCE OF SOLUTIONS FOR A CLASS OF GENERALIZED NASH EQUILIBRIUM PROBLEMS
    Zhang, Yule
    Zhang, Jihong
    Li, Wenzhuo
    Zhang, Liwei
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [50] On Intrinsic Complexity of Nash Equilibrium Problems and Bilevel Optimization
    Dorsch, D.
    Jongen, H. T.
    Shikhman, V.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (03) : 606 - 634