Research on Traffic Flow Forecasting Based on Dynamic Spatial-Temporal Transformer

被引:1
|
作者
Zhang, Hong [1 ]
Wang, Hongyan [1 ]
Zhang, Xijun [1 ]
Gong, Lei [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
data and data science; artificial intelligence and advanced computing applications; neural networks; information systems and technology; intelligent transportation systems; NEURAL-NETWORK;
D O I
10.1177/03611981231205880
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic flow forecasting is crucial for urban traffic control and route planning. Aiming at the difficulty in capturing dynamic spatio-temporal complexity of traffic flow, a dynamic spatio-temporal transformer (DST-Trans) model capable of modeling dynamic correlation of traffic flow is proposed, which consists of gated temporal convolutional network (GTCN), graph convolutional network (GCN), and spatio-temporal transformer (ST-TF). GTCN and GCN are utilized to capture the temporal and spatial characteristics of traffic flow, respectively. ST-TF includes a temporal transformer using temporal gated convolution and temporal multi-head self-attention to capture short-long term temporal features, and spatial transformer using spatial gated graph convolution and spatial multi-head self-attention to capture local-global dynamic spatial features. In addition, to take full advantage of the dynamic and static associations of road networks, multi-graph models of road relationship graph, similarity graph, and adaptive dynamic graph with SGGC are constructed. Experimental results show that the DST-Trans model in this paper shows good prediction performance in short-term (15 min), medium-term (30 min), and long-term (60 min) prediction, outperforming existing state-of-the-art models by up to approximately 7%.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 50 条
  • [1] Spatial-Temporal Graph Sandwich Transformer for Traffic Flow Forecasting
    Fan, Yujie
    Yeh, Chin-Chia Michael
    Chen, Huiyuan
    Wang, Liang
    Zhuang, Zhongfang
    Wang, Junpeng
    Dai, Xin
    Zheng, Yan
    Zhang, Wei
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 210 - 225
  • [2] Graph enhanced spatial-temporal transformer for traffic flow forecasting
    Kong, Weishan
    Ju, Yanni
    Zhang, Shiyuan
    Wang, Jun
    Huang, Liwei
    Qu, Hong
    APPLIED SOFT COMPUTING, 2025, 170
  • [3] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Li, Changwu
    Yin, Conghui
    Su, Yixin
    Xiao, Peng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21827 - 21839
  • [4] Spatial-Temporal Graph-Based Transformer Model for Traffic Flow Forecasting
    Wang, Qichao
    He, Guojun
    Lu, Peiyu
    Chen, Qiyang
    Chen, Yanrong
    Huang, Wei
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 2806 - 2811
  • [5] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Qingyong Zhang
    Wanfeng Chang
    Changwu Li
    Conghui Yin
    Yixin Su
    Peng Xiao
    Neural Computing and Applications, 2023, 35 : 21827 - 21839
  • [6] Transformer network with decoupled spatial-temporal embedding for traffic flow forecasting
    Sun, Wei
    Cheng, Rongzhang
    Jiao, Yingqi
    Gao, Junbo
    Zheng, Zhedian
    Lu, Nan
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30148 - 30168
  • [7] Decoupled Graph Spatial-Temporal Transformer Networks for traffic flow forecasting
    Sun, Wei
    Cheng, Rongzhang
    Jiao, Yingqi
    Gao, Junbo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [8] Bidirectional Spatial-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting
    Chen, Changlu
    Liu, Yanbin
    Chen, Ling
    Zhang, Chengqi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 6913 - 6925
  • [9] Dynamic Spatial-Temporal Convolutional Networks for Traffic Flow Forecasting
    Zhang, Hong
    Kan, Sunan
    Zhang, XiJun
    Cao, Jie
    Zhao, Tianxin
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (09) : 489 - 498
  • [10] Attention Based Spatial-Temporal Dynamic Interact Network for Traffic Flow Forecasting
    Xie, Junwei
    Ge, Liang
    Li, Haifeng
    Lin, Yiping
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 445 - 457