ON RELATIVE PURE CYCLIC FIELDS WITH POWER INTEGRAL BASES

被引:0
|
作者
Sahmoudi, Mohammed [1 ]
Charkani, Mohamed E. [2 ]
机构
[1] Ibn Tofail Univ, Natl Sch Appl Sci, Lab Engn Sci, PB 242, Kenitra 14000, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Lab Engn Sci, Fac Sci, BP 1796, Fes 30003, Morocco
来源
MATHEMATICA BOHEMICA | 2023年 / 148卷 / 01期
关键词
discrete valuation ring; Dedekind ring; monogenity; relative integral basis; nonic field; DEDEKIND; EXTENSIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = K(alpha) be an extension of a number field K, where ff satisfies the monic irreducible polynomial P ( X) = X-p - beta of prime degree belonging to o K [X] ( o(K) is the ring of integers of K). The purpose of this paper is to study the monogenity of L over K by a simple and practical version of Dedekind's criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field L with a pure cubic subfield, which is not necessarily a composite extension of two cubic subfields. We obtain a slightly simpler computation of the discriminant d(L/Q).
引用
收藏
页码:117 / 128
页数:12
相关论文
共 50 条