INTEGRAL BASES OF PURE FIELDS WITH SQUARE-FREE PARAMETER

被引:1
|
作者
Remete, Laszlo [1 ]
机构
[1] Univ Debrecen, Math Inst, Pf 400, H-4002 Debrecen, Hungary
关键词
Integral basis; pure fields; Newton polygons; MONOGENITY; POLYGONS;
D O I
10.1556/012.2020.57.1.1450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m not equal 0, +/- 1 and n >= 2 be integers. The ring of algebraic integers of the pure fields of type Q((n)root m) is explicitly known for n = 2,3,4. It is well known that for n = 2, an integral basis of the pure quadratic fields can be given parametrically, by using the remainder of the square-free part of m modulo 4. Such characterisation of an integral basis also exists for cubic and quartic pure fields, but for higher degree pure fields there are only results for special cases. In this paper we explicitly give an integral basis of the field Q((n)root m), where m not equal +/- 1 is square-free. Furthermore, we show that similarly to the quadratic case, an integral basis of Q((n)root m) is repeating periodically in m with period length depending on n.
引用
收藏
页码:91 / 115
页数:25
相关论文
共 50 条
  • [1] Square-free OM computation of global integral bases
    Guardia, Jordi
    Nart, Enric
    ALGEBRA & NUMBER THEORY, 2022, 16 (06) : 1327 - 1376
  • [2] Discriminants of pure square-free degree number fields
    Jakhar, Anuj
    Khanduja, Sudesh K.
    Sangwan, Neeraj
    ACTA ARITHMETICA, 2017, 181 (03) : 287 - 296
  • [3] BASES AND NONBASES OF SQUARE-FREE INTEGERS
    ERDOS, P
    NATHANSON, MB
    JOURNAL OF NUMBER THEORY, 1979, 11 (02) : 197 - 208
  • [4] On integral bases and monogenity of pure octic number fields with non-square free parameters
    El Fadil, Lhoussain
    Gaal, Istvan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [5] Integral almost square-free modular categories
    Dong, Jingcheng
    Li, Libin
    Dai, Li
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (06)
  • [6] Integral bases and monogenity of pure fields
    Gaal, Istvan
    Remete, Laszlo
    JOURNAL OF NUMBER THEORY, 2017, 173 : 129 - 146
  • [7] INTEGRAL-REPRESENTATIONS OF GROUPS OF SQUARE-FREE ORDER
    KLINGLER, L
    JOURNAL OF ALGEBRA, 1990, 129 (01) : 26 - 74
  • [8] Square-free words with square-free self-shuffles
    Currie, James D.
    Saari, Kalle
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [9] Consecutive square-free numbers and square-free primitive roots
    Jing, Mengyao
    Liu, Huaning
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (01) : 205 - 226
  • [10] THE SQUARE-FREE SIEVE OVER NUMBER-FIELDS
    GOUVEA, FQ
    JOURNAL OF NUMBER THEORY, 1993, 43 (01) : 109 - 122