INTEGRAL BASES OF PURE FIELDS WITH SQUARE-FREE PARAMETER

被引:1
|
作者
Remete, Laszlo [1 ]
机构
[1] Univ Debrecen, Math Inst, Pf 400, H-4002 Debrecen, Hungary
关键词
Integral basis; pure fields; Newton polygons; MONOGENITY; POLYGONS;
D O I
10.1556/012.2020.57.1.1450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m not equal 0, +/- 1 and n >= 2 be integers. The ring of algebraic integers of the pure fields of type Q((n)root m) is explicitly known for n = 2,3,4. It is well known that for n = 2, an integral basis of the pure quadratic fields can be given parametrically, by using the remainder of the square-free part of m modulo 4. Such characterisation of an integral basis also exists for cubic and quartic pure fields, but for higher degree pure fields there are only results for special cases. In this paper we explicitly give an integral basis of the field Q((n)root m), where m not equal +/- 1 is square-free. Furthermore, we show that similarly to the quadratic case, an integral basis of Q((n)root m) is repeating periodically in m with period length depending on n.
引用
收藏
页码:91 / 115
页数:25
相关论文
共 50 条
  • [31] Square-free partial words
    Halava, Vesa
    Harju, Tero
    Karki, Tomi
    INFORMATION PROCESSING LETTERS, 2008, 108 (05) : 290 - 292
  • [32] The distance to square-free polynomials
    Dubickas, Arturas
    Sha, Min
    ACTA ARITHMETICA, 2018, 186 (03) : 243 - 256
  • [33] Square-free perfect graphs
    Conforti, M
    Cornuéjols, G
    Vuskovic, K
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (02) : 257 - 307
  • [34] DISTRIBUTION OF SQUARE-FREE NUMBERS
    HOOLEY, C
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (06): : 1216 - 1223
  • [35] On the sum of the square of a prime and a square-free number
    Dudek, Adrian W.
    Platt, David J.
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2016, 19 (01): : 16 - 24
  • [36] Square-Free Pure Triangular Decomposition of Zero-Dimensional Polynomial Systems
    Haokun Li
    Bican Xia
    Tianqi Zhao
    Journal of Systems Science and Complexity, 2023, 36 (6) : 2661 - 2680
  • [37] The Distribution of Square-free Numbers
    贾朝华
    Science China Mathematics, 1993, (02) : 154 - 169
  • [38] Square-free Grobner degenerations
    Conca, Aldo
    Varbaro, Matteo
    INVENTIONES MATHEMATICAE, 2020, 221 (03) : 713 - 730
  • [39] DIFFERENCES OF SQUARE-FREE INTEGERS
    SILVERMA.DL
    PRIELIPP, B
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (06): : 678 - &
  • [40] THE DISTRIBUTION OF SQUARE-FREE NUMBERS
    BAKER, RC
    PINTZ, J
    ACTA ARITHMETICA, 1985, 46 (01) : 73 - 79