ON RELATIVE PURE CYCLIC FIELDS WITH POWER INTEGRAL BASES

被引:0
|
作者
Sahmoudi, Mohammed [1 ]
Charkani, Mohamed E. [2 ]
机构
[1] Ibn Tofail Univ, Natl Sch Appl Sci, Lab Engn Sci, PB 242, Kenitra 14000, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Lab Engn Sci, Fac Sci, BP 1796, Fes 30003, Morocco
来源
MATHEMATICA BOHEMICA | 2023年 / 148卷 / 01期
关键词
discrete valuation ring; Dedekind ring; monogenity; relative integral basis; nonic field; DEDEKIND; EXTENSIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = K(alpha) be an extension of a number field K, where ff satisfies the monic irreducible polynomial P ( X) = X-p - beta of prime degree belonging to o K [X] ( o(K) is the ring of integers of K). The purpose of this paper is to study the monogenity of L over K by a simple and practical version of Dedekind's criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field L with a pure cubic subfield, which is not necessarily a composite extension of two cubic subfields. We obtain a slightly simpler computation of the discriminant d(L/Q).
引用
收藏
页码:117 / 128
页数:12
相关论文
共 50 条
  • [41] Power integral bases in prime-power cyclotomic fields
    Gaal, Istvan
    Robertson, Leanne
    JOURNAL OF NUMBER THEORY, 2006, 120 (02) : 372 - 384
  • [42] Normal integral bases of Lehmer's cyclic quintic fields
    Hashimoto, Yu
    Aoki, Miho
    RAMANUJAN JOURNAL, 2024, 65 (02): : 985 - 1010
  • [43] Application of Weierstrass units to relative power integral bases
    Jung, Ho Yun
    Koo, Ja Kyung
    Shin, Dong Hwa
    REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (04) : 1489 - 1498
  • [44] Computing power integral bases in quartic relative extensions
    Gaál, I
    Pohst, M
    JOURNAL OF NUMBER THEORY, 2000, 85 (02) : 201 - 219
  • [45] On power integral bases of certain pure number fields defined by X3r - m
    Ben Yakkou, Hamid
    Kchit, Omar
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1072 - 1079
  • [46] Computing power integral bases in algebraic number fields
    Gaal, I
    NUMBER THEORY: DIOPHANTINE, COMPUTATIONAL AND ALGEBRAIC ASPECTS, 1998, : 243 - 254
  • [47] Power integral bases in the family of simplest quartic fields
    Olajos, P
    EXPERIMENTAL MATHEMATICS, 2005, 14 (02) : 129 - 132
  • [48] COMPUTING ALL POWER INTEGRAL BASES OF CUBIC FIELDS
    GAAL, I
    SCHULTE, N
    MATHEMATICS OF COMPUTATION, 1989, 53 (188) : 689 - 696
  • [49] Power integral bases in a parametric family of sextic fields
    Olajos, P
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (04): : 779 - 790
  • [50] POWER INTEGRAL BASES IN ORDERS OF FAMILIES OF QUARTIC FIELDS
    GAAL, I
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 42 (3-4): : 253 - 263