Tunable Optical Forces Enabled by Bilayer van der Waals Materials

被引:3
|
作者
Cai, Ziqiang [1 ]
Jin, Renchao [2 ]
Xu, Yihao [2 ]
Liu, Yongmin [1 ,2 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
来源
ADVANCED OPTICAL MATERIALS | 2024年 / 12卷 / 01期
基金
美国国家科学基金会;
关键词
graphene; optical force; tunable; alpha-MoO3; PHOTONIC MAGIC ANGLES; NEGATIVE REFRACTION; PHONON POLARITONS; PARTICLES; RADIATION; MANIPULATION;
D O I
10.1002/adom.202301288
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manipulation of nanoparticles by light induced forces is widely used in nanotechnology and bioengineering. In normal cases, when a nanoparticle is illuminated by light waves, the transfer of momentum from light to the nanoparticle can push it to move along the light propagation direction. On the other hand, the lateral optical force can transport an object perpendicular to the light propagation direction, and the optical pulling force can attract an object toward the light source. Although these optical forces have drawn growing attention, in situ tuning of them is rarely explored. In this paper, tuning of both lateral optical forces and optical pulling forces is numerically demonstrated via a graphene/alpha-phase molybdenum trioxide (alpha-MoO3) bilayer structure. Under plane-wave illumination, both the amplitude and direction of the optical forces exerted on a nanoparticle above this bilayer structure can be tuned in the mid-infrared range. The underlying mechanism can be understood by studying the corresponding isofrequency contours of the hybrid plasmon-phonon polaritons supported by the graphene/alpha-MoO3 bilayer. The analytical study using the dipole approximation method reproduces the numerical results, revealing the origin of the optical forces. This work opens a new avenue for engineering optical forces to manipulate various objects optically.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Tunable strain soliton networks confine electrons in van der Waals materials
    Edelberg, Drew
    Kumar, Hemant
    Shenoy, Vivek
    Ochoa, Hector
    Pasupathy, Abhay N.
    NATURE PHYSICS, 2020, 16 (11) : 1097 - +
  • [42] Tunable strain soliton networks confine electrons in van der Waals materials
    Drew Edelberg
    Hemant Kumar
    Vivek Shenoy
    Héctor Ochoa
    Abhay N. Pasupathy
    Nature Physics, 2020, 16 : 1097 - 1102
  • [43] Tunable Exciton Funnel Using Moire Super lattice in Twisted van der Waals Bilayer
    Wu, Menghao
    Qian, Xiaofeng
    Li, Ju
    NANO LETTERS, 2014, 14 (09) : 5350 - 5357
  • [44] Tunable electronic and optical properties of GaS/GaSe van der Waals heterostructure
    Jappor, Hamad Rahman
    Habeeb, Majeed Ali
    CURRENT APPLIED PHYSICS, 2018, 18 (06) : 673 - 680
  • [45] Optical and Tunable Electronic Properties of AlAs/InSe Van Der Waals Heterostructures
    Guo Rui
    Wei Xing
    Cao Moyun
    Zhang Yan
    Yang Yun
    Fan Jibin
    Liu Jian
    Tian Ye
    Zhao Zekun
    Duan Li
    ACTA CHIMICA SINICA, 2022, 80 (04) : 526 - 534
  • [46] Straintronics with van der Waals materials
    Feng Miao
    Shi-Jun Liang
    Bin Cheng
    npj Quantum Materials, 6
  • [47] Polaritons in van der Waals materials
    Basov, D. N.
    Fogler, M. M.
    Garcia de Abajo, F. J.
    SCIENCE, 2016, 354 (6309)
  • [48] Straintronics with van der Waals materials
    Miao, Feng
    Liang, Shi-Jun
    Cheng, Bin
    NPJ QUANTUM MATERIALS, 2021, 6 (01)
  • [49] Ductile van der Waals materials
    Han, Xiaodong
    SCIENCE, 2020, 369 (6503) : 509 - 509
  • [50] Van der Waals interaction in a boron nitride bilayer
    Hsing, Cheng-Rong
    Cheng, Ching
    Chou, Jyh-Pin
    Chang, Chun-Ming
    Wei, Ching-Ming
    NEW JOURNAL OF PHYSICS, 2014, 16