Tunable Optical Forces Enabled by Bilayer van der Waals Materials

被引:3
|
作者
Cai, Ziqiang [1 ]
Jin, Renchao [2 ]
Xu, Yihao [2 ]
Liu, Yongmin [1 ,2 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
来源
ADVANCED OPTICAL MATERIALS | 2024年 / 12卷 / 01期
基金
美国国家科学基金会;
关键词
graphene; optical force; tunable; alpha-MoO3; PHOTONIC MAGIC ANGLES; NEGATIVE REFRACTION; PHONON POLARITONS; PARTICLES; RADIATION; MANIPULATION;
D O I
10.1002/adom.202301288
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manipulation of nanoparticles by light induced forces is widely used in nanotechnology and bioengineering. In normal cases, when a nanoparticle is illuminated by light waves, the transfer of momentum from light to the nanoparticle can push it to move along the light propagation direction. On the other hand, the lateral optical force can transport an object perpendicular to the light propagation direction, and the optical pulling force can attract an object toward the light source. Although these optical forces have drawn growing attention, in situ tuning of them is rarely explored. In this paper, tuning of both lateral optical forces and optical pulling forces is numerically demonstrated via a graphene/alpha-phase molybdenum trioxide (alpha-MoO3) bilayer structure. Under plane-wave illumination, both the amplitude and direction of the optical forces exerted on a nanoparticle above this bilayer structure can be tuned in the mid-infrared range. The underlying mechanism can be understood by studying the corresponding isofrequency contours of the hybrid plasmon-phonon polaritons supported by the graphene/alpha-MoO3 bilayer. The analytical study using the dipole approximation method reproduces the numerical results, revealing the origin of the optical forces. This work opens a new avenue for engineering optical forces to manipulate various objects optically.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] ON MACROSCOPIC THEORY OF VAN DER WAALS FORCES
    VANKAMPEN, NG
    NIJBOER, BRA
    SCHRAM, K
    PHYSICS LETTERS A, 1968, A 26 (07) : 307 - +
  • [32] Bionics and management by van der Waals forces
    Kossovsky, N
    TRENDS IN POLYMER SCIENCE, 1996, 4 (10) : 324 - 325
  • [33] Surface van der Waals forces in a nutshell
    MacDowell, Luis G.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (08):
  • [34] Renormalization and Universality of Van der Waals forces
    Ruiz Arriola, Enrique
    Calle Cordon, Alvaro
    19TH INTERNATIONAL IUPAP CONFERENCE ON FEW-BODY PROBLEMS IN PHYSICS, 2009, 3
  • [35] VAN DER WAALS FORCES AT HIGH PRESSURES
    TRUBITSY.VP
    SOVIET PHYSICS SOLID STATE,USSR, 1966, 7 (11): : 2779 - +
  • [36] Note on the calculation of van der Waals forces
    Margenau, H
    PHYSICAL REVIEW, 1931, 37 (11): : 1425 - 1430
  • [37] The cohesion forces in the theory of van der Waals
    Kleesom, WH
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1922, 23 (6/9): : 943 - 948
  • [38] A BETTER MEASURE OF VAN DER WAALS FORCES
    不详
    CHEMICAL & ENGINEERING NEWS, 2014, 92 (49) : 31 - 31
  • [39] VAN DER WAALS FORCES IN SOLUTIONS.
    Kuzii, V.V.
    Ryzhii, V.I.
    Colloid Journal of the USSR (English Translation of Kolloidnyi Zhurnal), 1982, 44 (03): : 425 - 430
  • [40] Tunable axis-dependent conduction polarity in van der Waals materials
    Qi, Siyun
    Ai, Haoqiang
    Sun, Lei
    Zhang, Xuejin
    Zhao, Mingwen
    PHYSICAL REVIEW B, 2025, 111 (03)