Tunable Optical Forces Enabled by Bilayer van der Waals Materials

被引:3
|
作者
Cai, Ziqiang [1 ]
Jin, Renchao [2 ]
Xu, Yihao [2 ]
Liu, Yongmin [1 ,2 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
来源
ADVANCED OPTICAL MATERIALS | 2024年 / 12卷 / 01期
基金
美国国家科学基金会;
关键词
graphene; optical force; tunable; alpha-MoO3; PHOTONIC MAGIC ANGLES; NEGATIVE REFRACTION; PHONON POLARITONS; PARTICLES; RADIATION; MANIPULATION;
D O I
10.1002/adom.202301288
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manipulation of nanoparticles by light induced forces is widely used in nanotechnology and bioengineering. In normal cases, when a nanoparticle is illuminated by light waves, the transfer of momentum from light to the nanoparticle can push it to move along the light propagation direction. On the other hand, the lateral optical force can transport an object perpendicular to the light propagation direction, and the optical pulling force can attract an object toward the light source. Although these optical forces have drawn growing attention, in situ tuning of them is rarely explored. In this paper, tuning of both lateral optical forces and optical pulling forces is numerically demonstrated via a graphene/alpha-phase molybdenum trioxide (alpha-MoO3) bilayer structure. Under plane-wave illumination, both the amplitude and direction of the optical forces exerted on a nanoparticle above this bilayer structure can be tuned in the mid-infrared range. The underlying mechanism can be understood by studying the corresponding isofrequency contours of the hybrid plasmon-phonon polaritons supported by the graphene/alpha-MoO3 bilayer. The analytical study using the dipole approximation method reproduces the numerical results, revealing the origin of the optical forces. This work opens a new avenue for engineering optical forces to manipulate various objects optically.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On the van-der-Waals forces
    Maslov, V. P.
    MATHEMATICAL NOTES, 2016, 99 (1-2) : 284 - 289
  • [22] On the dispersive van der Waals forces
    Farina, C
    Santos, FC
    Tort, AC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (6-7): : 794 - 797
  • [23] Van Der Waals forces in Helium
    Page, CH
    PHYSICAL REVIEW, 1938, 53 (05): : 426 - 430
  • [24] Surface instability of a bilayer elastic film due to surface van der Waals forces
    Yoon, J
    Ru, CQ
    Mioduchowski, A
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (11)
  • [25] Nonlinear forced vibration of bilayer van der Waals materials drum resonator
    Liu, Rumeng
    Wang, Lifeng
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (14)
  • [26] SURFACE VAN-DER-WAALS FORCES
    LANDO, D
    SLUTSKY, LJ
    JOURNAL OF CHEMICAL PHYSICS, 1970, 52 (03): : 1510 - &
  • [27] Van der Waals forces and spatial dispersion
    Pitaevskii, L. P.
    LASER PHYSICS, 2009, 19 (04) : 632 - 635
  • [28] Atomic correlations and van der Waals forces
    Martin, PA
    HELVETICA PHYSICA ACTA, 1997, 70 (1-2): : 80 - 95
  • [29] VAN DER WAALS FORCES FOR INERT GASES
    KINGSTON, AE
    PHYSICAL REVIEW, 1964, 135 (4A): : 1018 - +
  • [30] VAN DER WAALS FORCES IN ATOMS AND MOLECULES
    KARPLUS, M
    KOLKER, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (12): : 3955 - &