Tunable Optical Forces Enabled by Bilayer van der Waals Materials

被引:3
|
作者
Cai, Ziqiang [1 ]
Jin, Renchao [2 ]
Xu, Yihao [2 ]
Liu, Yongmin [1 ,2 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
来源
ADVANCED OPTICAL MATERIALS | 2024年 / 12卷 / 01期
基金
美国国家科学基金会;
关键词
graphene; optical force; tunable; alpha-MoO3; PHOTONIC MAGIC ANGLES; NEGATIVE REFRACTION; PHONON POLARITONS; PARTICLES; RADIATION; MANIPULATION;
D O I
10.1002/adom.202301288
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manipulation of nanoparticles by light induced forces is widely used in nanotechnology and bioengineering. In normal cases, when a nanoparticle is illuminated by light waves, the transfer of momentum from light to the nanoparticle can push it to move along the light propagation direction. On the other hand, the lateral optical force can transport an object perpendicular to the light propagation direction, and the optical pulling force can attract an object toward the light source. Although these optical forces have drawn growing attention, in situ tuning of them is rarely explored. In this paper, tuning of both lateral optical forces and optical pulling forces is numerically demonstrated via a graphene/alpha-phase molybdenum trioxide (alpha-MoO3) bilayer structure. Under plane-wave illumination, both the amplitude and direction of the optical forces exerted on a nanoparticle above this bilayer structure can be tuned in the mid-infrared range. The underlying mechanism can be understood by studying the corresponding isofrequency contours of the hybrid plasmon-phonon polaritons supported by the graphene/alpha-MoO3 bilayer. The analytical study using the dipole approximation method reproduces the numerical results, revealing the origin of the optical forces. This work opens a new avenue for engineering optical forces to manipulate various objects optically.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Van der Waals epitaxy of tunable moires enabled by alloying
    Fortin-Deschenes, Matthieu
    Watanabe, Kenji
    Taniguchi, Takashi
    Xia, Fengnian
    NATURE MATERIALS, 2024, 23 (03) : 339 - 346
  • [2] Aqueous Gating of van der Waals Materials on Bilayer Nanopaper
    Bao, Wenzhong
    Fang, Zhiqiang
    Wan, Jiayu
    Dai, Jiaqi
    Zhu, Hongli
    Han, Xiaogang
    Yang, Xiaofeng
    Preston, Colin
    Hu, Liangbing
    ACS NANO, 2014, 8 (10) : 10606 - 10612
  • [3] Van der Waals forces
    Margenau, H
    REVIEWS OF MODERN PHYSICS, 1939, 11 (01) : 0001 - 0035
  • [4] Van der Waals epitaxy of tunable moirés enabled by alloying
    Matthieu Fortin-Deschênes
    Kenji Watanabe
    Takashi Taniguchi
    Fengnian Xia
    Nature Materials, 2024, 23 : 339 - 346
  • [5] Tunable mosaic structures in van der Waals layered materials
    Quan, Silong
    He, Linghui
    Ni, Yong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (39) : 25428 - 25436
  • [6] Repulsive van der Waals forces due to hydrogen exposure on bilayer graphene
    Bostrom, Mathias
    Sernelius, Bo E.
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [7] Dynamics of optical vortices in Van der Waals materials
    Bucher, T.
    Kurman, Y.
    Wang, K.
    Yan, Q.
    Niedermayr, A.
    Ruimy, R.
    Nahari, H.
    Dahan, R.
    Shienfux, H. Herzig
    Vanacore, G. M.
    Kaminer, I.
    ACTIVE PHOTONIC PLATFORMS, APP 2024, 2024, 13110
  • [8] Dynamics of optical vortices in van der Waals materials
    Kurman, Yaniv
    Dahan, Raphael
    Shenfux, Hanan Herzig
    Rosolen, Gilles
    Janzen, Eli
    Edgar, James H.
    Koppens, Frank H. L.
    Kaminer, Ido
    OPTICA, 2023, 10 (05): : 612 - 618
  • [9] Flatband polaritonic router in twisted bilayer van der Waals materials
    Lv, Haoran
    Bai, Yihua
    Zhang, Qing
    Yang, Yuanjie
    OPTICS LETTERS, 2023, 48 (15) : 4073 - 4076
  • [10] On the van-der-Waals forces
    V. P. Maslov
    Mathematical Notes, 2016, 99 : 284 - 289