Littlewood-Paley and wavelet characterization for mixed Morrey spaces

被引:0
|
作者
Nogayama, Toru [1 ]
机构
[1] Chuo Univ, Dept Math, Tokyo 1128551, Japan
基金
日本学术振兴会;
关键词
Littlewood-Paley theory; mixed Morrey spaces; predual spaces; wavelet; LEBESGUE SPACES; BESOV-MORREY; NORM; OPERATORS; REARRANGEMENTS; INEQUALITY; LP;
D O I
10.1002/mana.202300249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Littlewood-Paley characterization for mixed Morrey spaces and its predual spaces. The topology to converge the Littlewood-Paley decomposition for the element of mixed Morrey spaces is the weak-* topology. If we consider the topology of mixed Morrey spaces, we must give other characterization by using the heat semigroup. As an application, we show the wavelet characterization for mixed Morrey spaces. In particular, this characterization can be shown without the Peetre maximal operator.
引用
收藏
页码:2198 / 2233
页数:36
相关论文
共 50 条
  • [11] LITTLEWOOD-PALEY CHARACTERIZATION OF WEIGHTED ANISOTROPIC HARDY SPACES
    Hu, Guorong
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (02): : 675 - 700
  • [12] Littlewood-Paley functions and Sobolev spaces
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Fayou
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 : 273 - 297
  • [13] LITTLEWOOD-PALEY THEOREM IN THE BA SPACES
    MA, JG
    CHINESE SCIENCE BULLETIN, 1989, 34 (18): : 1507 - 1513
  • [14] LIPSCHITZ SPACES, LITTLEWOOD-PALEY SPACES AND CONVOLUTEURS
    JOHNSON, RL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A757 - A757
  • [15] LIPSCHITZ SPACES, LITTLEWOOD-PALEY SPACES, AND CONVOLUTEURS
    JOHNSON, R
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 29 (JUL) : 127 - 141
  • [16] Commutators of Littlewood-Paley Operators on the Generalized Morrey Space
    Yanping Chen
    Yong Ding
    Xinxia Wang
    Journal of Inequalities and Applications, 2010
  • [17] Commutators of Littlewood-Paley Operators on the Generalized Morrey Space
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [18] LITTLEWOOD-PALEY THEORY ON GAUSSIAN SPACES
    POTTHOFF, J
    NAGOYA MATHEMATICAL JOURNAL, 1988, 109 : 47 - 61
  • [19] Littlewood-Paley characterizations of Triebel-Lizorkin-Morrey spaces via ball averages
    Zhang, Junwei
    Zhuo, Ciqiang
    Yang, Dachun
    He, Ziyi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 150 : 76 - 103
  • [20] Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
    Lijuan Wang
    Shuangping Tao
    Journal of Inequalities and Applications, 2014