Littlewood-Paley and wavelet characterization for mixed Morrey spaces

被引:0
|
作者
Nogayama, Toru [1 ]
机构
[1] Chuo Univ, Dept Math, Tokyo 1128551, Japan
基金
日本学术振兴会;
关键词
Littlewood-Paley theory; mixed Morrey spaces; predual spaces; wavelet; LEBESGUE SPACES; BESOV-MORREY; NORM; OPERATORS; REARRANGEMENTS; INEQUALITY; LP;
D O I
10.1002/mana.202300249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Littlewood-Paley characterization for mixed Morrey spaces and its predual spaces. The topology to converge the Littlewood-Paley decomposition for the element of mixed Morrey spaces is the weak-* topology. If we consider the topology of mixed Morrey spaces, we must give other characterization by using the heat semigroup. As an application, we show the wavelet characterization for mixed Morrey spaces. In particular, this characterization can be shown without the Peetre maximal operator.
引用
收藏
页码:2198 / 2233
页数:36
相关论文
共 50 条
  • [21] LITTLEWOOD-PALEY THEOREM IN THE Ba SPACES
    马继钢
    ChineseScienceBulletin, 1989, (18) : 1507 - 1513
  • [22] BOUNDEDNESS OF INTRINSIC LITTLEWOOD-PALEY FUNCTIONS ON MUSIELAK-ORLICZ MORREY AND CAMPANATO SPACES
    Liang, Yiyu
    Nakai, Eiichi
    Yang, Dachun
    Zhang, Junqiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (01): : 221 - 268
  • [23] Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
    Wang, Lijuan
    Tao, Shuangping
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [24] LITTLEWOOD-PALEY CHARACTERIZATION OF WEIGHTED HARDY SPACES ASSOCIATED WITH OPERATORS
    Hu, Guorong
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (02) : 250 - 267
  • [25] Littlewood-Paley characterization of BMO and Triebel-Lizorkin spaces
    Tselishchev, Anton
    Vasilyev, Ioann
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (10) : 2029 - 2043
  • [26] Littlewood–Paley theory for Morrey spaces and their preduals
    Takashi Izumi
    Yoshihiro Sawano
    Hitoshi Tanaka
    Revista Matemática Complutense, 2015, 28 : 411 - 447
  • [27] A LITTLEWOOD-PALEY TYPE THEOREM FOR BERGMAN SPACES
    陈泽乾
    欧阳威
    ActaMathematicaScientia, 2013, 33 (01) : 150 - 154
  • [28] THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS
    Lu Shanzhen and Yang Dachun (Beijing Normal University
    ApproximationTheoryandItsApplications, 1995, (03) : 72 - 94
  • [29] A LITTLEWOOD-PALEY TYPE THEOREM FOR BERGMAN SPACES
    Chen, Zeqian
    Ouyang, Wei
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (01) : 150 - 154
  • [30] ON A LITTLEWOOD-PALEY IDENTITY AND CHARACTERIZATION OF WAVELETS
    CHUI, CK
    SHI, XL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 177 (02) : 608 - 626