Littlewood-Paley functions and Sobolev spaces

被引:1
|
作者
Chen, Jiecheng [1 ]
Fan, Dashan [1 ,2 ]
Zhao, Fayou [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321000, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 59201 USA
[3] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Littlewood-Paley square functions; Sobolev spaces; Spherical average; Ball average; Bochner-Riesz means; AVERAGES;
D O I
10.1016/j.na.2019.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish Littlewood-Paley characterizations of the Sobolev spaces W-alpha,W-p in Euclidean spaces using several square functions defined via the spherical average, the ball average, the Bochner-Riesz means and some other well known operators. We provide a simple proof so that we are able to extend and improve many results published in recent papers. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:273 / 297
页数:25
相关论文
共 50 条
  • [1] Generalized Littlewood-Paley characterizations of fractional Sobolev spaces
    Sato, Shuichi
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (07)
  • [2] LITTLEWOOD-PALEY SPACES
    Ho, Kwok-Pun
    MATHEMATICA SCANDINAVICA, 2011, 108 (01) : 77 - 102
  • [3] Generalized Littlewood-Paley functions on product spaces
    AL-QASSEM, Hussain
    CHENG, Leslie
    PAN, Yibiao
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 319 - 345
  • [4] LITTLEWOOD-PALEY FUNCTIONS
    MADYCH, WR
    STUDIA MATHEMATICA, 1974, 50 (01) : 43 - 63
  • [5] On littlewood-paley functions
    Cheng, Leslie C.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) : 3241 - 3247
  • [6] ON LITTLEWOOD-PALEY FUNCTIONS
    MADYCH, WR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A526 - A526
  • [7] Characterization of Parabolic Hardy Spaces by Littlewood-Paley Functions
    Sato, Shuichi
    RESULTS IN MATHEMATICS, 2018, 73 (03)
  • [8] HARDY SPACES ON HOMOGENEOUS GROUPS AND LITTLEWOOD-PALEY FUNCTIONS
    Sato, Shuichi
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (01): : 295 - 320
  • [9] Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in the Hermite setting
    Betancor, J. J.
    Farina, J. C.
    Sanabria, A.
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (02): : 165 - 195
  • [10] Littlewood-Paley characterizations of fractional Sobolev spaces via averages on balls
    Dai, Feng
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (06) : 1135 - 1163