Littlewood-Paley functions and Sobolev spaces

被引:1
|
作者
Chen, Jiecheng [1 ]
Fan, Dashan [1 ,2 ]
Zhao, Fayou [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321000, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 59201 USA
[3] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Littlewood-Paley square functions; Sobolev spaces; Spherical average; Ball average; Bochner-Riesz means; AVERAGES;
D O I
10.1016/j.na.2019.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish Littlewood-Paley characterizations of the Sobolev spaces W-alpha,W-p in Euclidean spaces using several square functions defined via the spherical average, the ball average, the Bochner-Riesz means and some other well known operators. We provide a simple proof so that we are able to extend and improve many results published in recent papers. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:273 / 297
页数:25
相关论文
共 50 条
  • [31] Littlewood-Paley characterizations of higher-order Sobolev spaces via averages on balls
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (2-3) : 284 - 325
  • [32] Littlewood-Paley Characterizations of Second-Order Sobolev Spaces via Averages on Balls
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (01): : 104 - 118
  • [33] Littlewood-Paley theory for Morrey spaces and their preduals
    Izumi, Takashi
    Sawano, Yoshihiro
    Tanaka, Hitoshi
    REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (02): : 411 - 447
  • [34] Deleeuw's theorem on Littlewood-Paley functions
    Chen, CP
    Fan, DS
    Sato, SC
    NAGOYA MATHEMATICAL JOURNAL, 2002, 165 : 23 - 42
  • [35] A LITTLEWOOD-PALEY TYPE THEOREM FOR BERGMAN SPACES
    陈泽乾
    欧阳威
    ActaMathematicaScientia, 2013, 33 (01) : 150 - 154
  • [36] LITTLEWOOD-PALEY THEORY FOR MIXED NORM SPACES
    GOSSELIN, JA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 256 (DEC) : 113 - 124
  • [37] THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS
    Lu Shanzhen and Yang Dachun (Beijing Normal University
    ApproximationTheoryandItsApplications, 1995, (03) : 72 - 94
  • [38] A LITTLEWOOD-PALEY TYPE THEOREM FOR BERGMAN SPACES
    Chen, Zeqian
    Ouyang, Wei
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (01) : 150 - 154
  • [39] Fourier Multipliers and Littlewood-Paley for modulation spaces
    Mohanty, Parasar
    Shrivastava, Saurabh
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 324 - 338
  • [40] ITERATED LITTLEWOOD-PALEY FUNCTIONS AND A MULTIPLIER THEOREM
    MADYCH, WR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (03) : 325 - 331