REGULARITY FOR A NON-LOCAL DIFFUSION EQUATION WITH RIEMANN-LIOUVILLE DERIVATIVE

被引:1
|
作者
Tuan, Nguyen Hoang [1 ,2 ]
Kumar, Devendra [3 ]
Nguyen, Anh Tuan [4 ,5 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Univ Rajasthan, Dept Math, Jaipur, Rajasthan, India
[4] Van Lang Univ, Ho Chi Minh City, Vietnam
[5] Van Lang Univ, Fac Appl Technol, Sch Technol, Ho Chi Minh City, Vietnam
来源
THERMAL SCIENCE | 2023年 / 27卷 / Special Issue 1期
关键词
fractional diffusion equation; Riemman-Liouville; regularity;
D O I
10.2298/TSCI23S1373T
中图分类号
O414.1 [热力学];
学科分类号
摘要
Our main goal in this paper is to investigate the regularity of the mild solution fractional diffusion equation which can be used in the modelling of heat trans-fer with memory effects. Under some various assumptions of the input data, we obtain two main results. We also provide the upper bound and lower bound of the source function. The main tool is to use complex evaluations involving the Wright function.
引用
收藏
页码:S373 / S382
页数:10
相关论文
共 50 条
  • [41] RIEMANN-LIOUVILLE DERIVATIVE OVER THE SPACE OF INTEGRABLE DISTRIBUTIONS
    Morales, Maria Guadalupe
    Dosla, Zuzana
    Mendoza, Francisco J.
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 567 - 587
  • [42] ON A CERTAIN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATOR
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Tomovski, Zivorad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 507 - 522
  • [43] Fractional Differential Equations, Riemann-Liouville and Jumarie Derivative
    Bastincova, Alena
    Smarda, Zdenek
    XXIX INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, PT 1, 2011, : 43 - 49
  • [44] On a Nonlocal Problem for Mixed-Type Equation with Partial Riemann-Liouville Fractional Derivative
    Ruziev, Menglibay
    Zunnunov, Rakhimjon
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [45] Steklov problem for a linear ordinary fractional delay differential equation with the Riemann-Liouville derivative
    Mazhgikhova, M. G.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 106 (02): : 161 - 171
  • [46] On the solution of the Cauchy problem for a higher-order equation with the fractional Riemann-Liouville derivative
    Irgashev, B. Yu.
    QUAESTIONES MATHEMATICAE, 2024, 47 (07) : 1339 - 1352
  • [47] On a Boundary Value Problem for an Equation of Mixed Type with a Riemann-Liouville Fractional Partial Derivative
    Repin, O. A.
    Frolov, A. A.
    DIFFERENTIAL EQUATIONS, 2016, 52 (10) : 1384 - 1388
  • [48] SOME INCOMPLETE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATORS
    Menon, Mudita
    Mittal, Ekta
    Gupta, Rajni
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 210 - 223
  • [49] Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications
    Mohammed Al-Refai
    Yuri Luchko
    Fractional Calculus and Applied Analysis, 2014, 17 : 483 - 498
  • [50] Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications
    Al-Refai, Mohammed
    Luchko, Yuri
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) : 483 - 498