REGULARITY FOR A NON-LOCAL DIFFUSION EQUATION WITH RIEMANN-LIOUVILLE DERIVATIVE

被引:1
|
作者
Tuan, Nguyen Hoang [1 ,2 ]
Kumar, Devendra [3 ]
Nguyen, Anh Tuan [4 ,5 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Univ Rajasthan, Dept Math, Jaipur, Rajasthan, India
[4] Van Lang Univ, Ho Chi Minh City, Vietnam
[5] Van Lang Univ, Fac Appl Technol, Sch Technol, Ho Chi Minh City, Vietnam
来源
THERMAL SCIENCE | 2023年 / 27卷 / Special Issue 1期
关键词
fractional diffusion equation; Riemman-Liouville; regularity;
D O I
10.2298/TSCI23S1373T
中图分类号
O414.1 [热力学];
学科分类号
摘要
Our main goal in this paper is to investigate the regularity of the mild solution fractional diffusion equation which can be used in the modelling of heat trans-fer with memory effects. Under some various assumptions of the input data, we obtain two main results. We also provide the upper bound and lower bound of the source function. The main tool is to use complex evaluations involving the Wright function.
引用
收藏
页码:S373 / S382
页数:10
相关论文
共 50 条
  • [31] Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu
    Atangana, Abdon
    Gomez-Aguilar, J. F.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1502 - 1523
  • [32] THE UNIFIED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE FORMULAE
    Soni, R. C.
    Singh, Deepika
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 231 - 236
  • [33] Auxiliary Equation Method for Fractional Differential Equations with Modified Riemann-Liouville Derivative
    Akbulut, Arzu
    Kaplan, Melike
    Bekir, Ahmet
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2016, 17 (7-8) : 413 - 420
  • [34] BOUNDARY VALUE PROBLEM FOR PARTIAL DIFFERENTIAL EQUATION WITH FRACTIONAL RIEMANN-LIOUVILLE DERIVATIVE
    Repin, Oleg Alexandrovich
    UFA MATHEMATICAL JOURNAL, 2015, 7 (03): : 67 - 72
  • [35] RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE WITH VARYING ARGUMENTS
    Ravikumar, N.
    Latha, S.
    MATEMATICKI VESNIK, 2012, 64 (01): : 17 - 23
  • [36] A Cauchy Type Problem for a Degenerate Equation with the Riemann-Liouville Derivative in the Sectorial Case
    Fedorov, V. E.
    Avilovich, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (02) : 359 - 372
  • [37] CAUCHY PROBLEM FOR A PARABOLIC EQUATION WITH BESSEL OPERATOR AND RIEMANN-LIOUVILLE PARTIAL DERIVATIVE
    Khushtova, F. G.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (01): : 74 - 84
  • [38] Boundary value problem for the heat equation with a load as the Riemann-Liouville fractional derivative
    Pskhu, A., V
    Kosmakova, M. T.
    Akhmanova, D. M.
    Kassymova, L. Zh
    Assetov, A. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 74 - 82
  • [39] On the solutions of nonlinear fractional Klein-Gordon equation with modified Riemann-Liouville derivative
    Merdan, Mehmet
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 877 - 888
  • [40] Inverse Coefficient Problem for Fractional Wave Equation with the Generalized Riemann-Liouville Time Derivative
    Durdiev, Durdimurod
    Turdiev, Halim
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,