REGULARITY FOR A NON-LOCAL DIFFUSION EQUATION WITH RIEMANN-LIOUVILLE DERIVATIVE

被引:1
|
作者
Tuan, Nguyen Hoang [1 ,2 ]
Kumar, Devendra [3 ]
Nguyen, Anh Tuan [4 ,5 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Univ Rajasthan, Dept Math, Jaipur, Rajasthan, India
[4] Van Lang Univ, Ho Chi Minh City, Vietnam
[5] Van Lang Univ, Fac Appl Technol, Sch Technol, Ho Chi Minh City, Vietnam
来源
THERMAL SCIENCE | 2023年 / 27卷 / Special Issue 1期
关键词
fractional diffusion equation; Riemman-Liouville; regularity;
D O I
10.2298/TSCI23S1373T
中图分类号
O414.1 [热力学];
学科分类号
摘要
Our main goal in this paper is to investigate the regularity of the mild solution fractional diffusion equation which can be used in the modelling of heat trans-fer with memory effects. Under some various assumptions of the input data, we obtain two main results. We also provide the upper bound and lower bound of the source function. The main tool is to use complex evaluations involving the Wright function.
引用
收藏
页码:S373 / S382
页数:10
相关论文
共 50 条
  • [21] Recovering a Space-Dependent Source Term in the Fractional Diffusion Equation with the Riemann-Liouville Derivative
    Liu, Songshu
    MATHEMATICS, 2022, 10 (17)
  • [22] On a final value problem for fractional reaction-diffusion equation with Riemann-Liouville fractional derivative
    Ngoc Tran
    Vo Van Au
    Zhou, Yong
    Nguyen Huy Tuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3086 - 3098
  • [23] REGULARITY OF MILD SOLUTIONS TO FRACTIONAL CAUCHY PROBLEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Li, Ya-Ning
    Sun, Hong-Rui
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [24] ON A PROBLEM FOR MIXED TYPE EQUATION WITH PARTIAL RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Repin, O. A.
    Tarasenko, A. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (04): : 636 - 643
  • [25] On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative
    Merdan, Mehmet
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012
  • [26] Lie symmetry analysis for fractional evolution equation with ζ-Riemann-Liouville derivative
    Soares, Junior C. A.
    Costa, Felix S.
    Sousa, J. Vanterler C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [27] Inverse Problem for a Two-Dimensional Anomalous Diffusion Equation with a Fractional Derivative of the Riemann-Liouville Type
    Brociek, Rafal
    Wajda, Agata
    Slota, Damian
    ENERGIES, 2021, 14 (11)
  • [28] Conditions for the existence of a classical solution of a cauchy type problem for the diffusion equation with a Riemann-Liouville partial derivative
    Voroshilov, A. A.
    Kilbas, A. A.
    DIFFERENTIAL EQUATIONS, 2008, 44 (06) : 789 - 806
  • [29] Conditions for the existence of a classical solution of a cauchy type problem for the diffusion equation with a Riemann-Liouville partial derivative
    A. A. Voroshilov
    A. A. Kilbas
    Differential Equations, 2008, 44 : 789 - 806
  • [30] Extension of the fractional derivative operator of the Riemann-Liouville
    Baleanu, Dumitru
    Agarwal, Praveen
    Parmar, Rakesh K.
    Alqurashi, Maysaa M.
    Salahshour, Soheil
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 2914 - 2924