REGULARITY FOR A NON-LOCAL DIFFUSION EQUATION WITH RIEMANN-LIOUVILLE DERIVATIVE

被引:1
|
作者
Tuan, Nguyen Hoang [1 ,2 ]
Kumar, Devendra [3 ]
Nguyen, Anh Tuan [4 ,5 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Univ Rajasthan, Dept Math, Jaipur, Rajasthan, India
[4] Van Lang Univ, Ho Chi Minh City, Vietnam
[5] Van Lang Univ, Fac Appl Technol, Sch Technol, Ho Chi Minh City, Vietnam
来源
THERMAL SCIENCE | 2023年 / 27卷 / Special Issue 1期
关键词
fractional diffusion equation; Riemman-Liouville; regularity;
D O I
10.2298/TSCI23S1373T
中图分类号
O414.1 [热力学];
学科分类号
摘要
Our main goal in this paper is to investigate the regularity of the mild solution fractional diffusion equation which can be used in the modelling of heat trans-fer with memory effects. Under some various assumptions of the input data, we obtain two main results. We also provide the upper bound and lower bound of the source function. The main tool is to use complex evaluations involving the Wright function.
引用
收藏
页码:S373 / S382
页数:10
相关论文
共 50 条
  • [1] SOLUTION IN EXPLICIT FORM OF NON-LOCAL PROBLEM FOR DIFFERENTIAL EQUATION WITH PARTIAL FRACTIONAL DERIVATIVE OF RIEMANN-LIOUVILLE
    Sayganova, S. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (01): : 151 - 157
  • [2] On a backward problem for fractional diffusion equation with Riemann-Liouville derivative
    Nguyen Huy Tuan
    Nguyen Hoang Tuan
    Baleanu, Dumitru
    Tran Ngoc Thach
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1292 - 1312
  • [3] ON A NON-LOCAL PROBLEM FOR A LOADED MIXED TYPE EQUATION WITH CAPUTO AND RIEMANN-LIOUVILLE OPERATORS
    Abdullaev, Obidjon Kh.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [4] Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative
    Sandev, Trifce
    Metzler, Ralf
    Tomovski, Zivorad
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (25)
  • [5] Identifying inverse source for fractional diffusion equation with Riemann-Liouville derivative
    Nguyen Huy Tuan
    Zhou, Yong
    Le Dinh Long
    Nguyen Huu Can
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [6] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [7] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [8] Regularization of inverse source problem for fractional diffusion equation with Riemann-Liouville derivative
    Liu, Songshu
    Sun, Fuquan
    Feng, Lixin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):
  • [9] WELL-POSEDNESS AND REGULARIZATION FOR NONLOCAL DIFFUSION EQUATION WITH RIEMANN-LIOUVILLE DERIVATIVE
    Wang, Renhai
    Van Dai, Hoang
    Tuan, Nguyen Anh
    Can, Nguyen Huu
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)
  • [10] Fractional Ince equation with a Riemann-Liouville fractional derivative
    Parra-Hinojosa, Alfredo
    Gutierrez-Vega, Julio C.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10695 - 10705