On Generalized Bivariate (p,q)-Bernoulli-Fibonacci Polynomials and Generalized Bivariate (p,q)-Bernoulli-Lucas Polynomials

被引:4
|
作者
Guan, Hao [1 ,2 ]
Khan, Waseem Ahmad [3 ]
Kizilates, Can [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Qiannan Normal Univ Nationalities, Sch Comp Sci Informat Technol, Duyun 558000, Peoples R China
[3] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
[4] Zonguldak Bulent Ecevit Univ, Dept Math, TR-67100 Zonguldak, Turkiye
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 04期
关键词
q-Bernoulli numbers; (p; q)-Bernoulli numbers; unified; q)-Bernoulli polynomials; h(x)-Fibonacci polynomials; generating functions; FIBONACCI;
D O I
10.3390/sym15040943
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties, have been studied in the literature with the help of generating functions and their functional equations. In this paper, we define the generalized (p,q)-Bernoulli-Fibonacci and generalized (p,q)-Bernoulli-Lucas polynomials and numbers by using the (p,q)-Bernoulli numbers, unified (p,q)-Bernoulli polynomials, h(x)-Fibonacci polynomials, and h(x)-Lucas polynomials. We also introduce the generalized bivariate (p,q)-Bernoulli-Fibonacci and generalized bivariate (p,q)-Bernoulli-Lucas polynomials and numbers. Then, we derive some properties of these newly established polynomials and numbers by using their generating functions with their functional equations. Finally, we provide some families of bilinear and bilateral generating functions for the generalized bivariate (p,q)-Bernoulli-Fibonacci polynomials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] New results on the q-generalized Bernoulli polynomials of level m
    Urieles, Alejandro
    Jose Ortega, Maria
    Ramirez, William
    Vega, Samuel
    DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 511 - 522
  • [33] On generalized Fibonacci and Lucas polynomials
    Nalli, Ayse
    Haukkanen, Pentti
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 3179 - 3186
  • [34] Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions
    S. Z. H. Eweis
    Z. S. I. Mansour
    Results in Mathematics, 2022, 77
  • [35] An Identity for Generalized Bernoulli Polynomials
    Chellal, Redha
    Bencherif, Farid
    Mehbali, Mohamed
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (11)
  • [36] Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials
    Ozkan, Engin
    Altun, Ipek
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 4020 - 4030
  • [37] A STUDY ON DEGENERATE ( p, q, h )- BERNOULLI POLYNOMIALS AND NUMBERS
    Lee, Hui Young
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (05): : 1145 - 1153
  • [38] Some Identities on the Generalized q-Bernoulli, q-Euler, and q-Genocchi Polynomials
    Kim, Daeyeoul
    Kurt, Burak
    Kurt, Veli
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [39] q-Bernoulli numbers and q-Bernoulli polynomials revisited
    Cheon Seoung Ryoo
    Taekyun Kim
    Byungje Lee
    Advances in Difference Equations, 2011
  • [40] q-Bernoulli numbers and q-Bernoulli polynomials revisited
    Ryoo, Cheon Seoung
    Kim, Taekyun
    Lee, Byungje
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,