On Generalized Bivariate (p,q)-Bernoulli-Fibonacci Polynomials and Generalized Bivariate (p,q)-Bernoulli-Lucas Polynomials

被引:4
|
作者
Guan, Hao [1 ,2 ]
Khan, Waseem Ahmad [3 ]
Kizilates, Can [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Qiannan Normal Univ Nationalities, Sch Comp Sci Informat Technol, Duyun 558000, Peoples R China
[3] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
[4] Zonguldak Bulent Ecevit Univ, Dept Math, TR-67100 Zonguldak, Turkiye
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 04期
关键词
q-Bernoulli numbers; (p; q)-Bernoulli numbers; unified; q)-Bernoulli polynomials; h(x)-Fibonacci polynomials; generating functions; FIBONACCI;
D O I
10.3390/sym15040943
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties, have been studied in the literature with the help of generating functions and their functional equations. In this paper, we define the generalized (p,q)-Bernoulli-Fibonacci and generalized (p,q)-Bernoulli-Lucas polynomials and numbers by using the (p,q)-Bernoulli numbers, unified (p,q)-Bernoulli polynomials, h(x)-Fibonacci polynomials, and h(x)-Lucas polynomials. We also introduce the generalized bivariate (p,q)-Bernoulli-Fibonacci and generalized bivariate (p,q)-Bernoulli-Lucas polynomials and numbers. Then, we derive some properties of these newly established polynomials and numbers by using their generating functions with their functional equations. Finally, we provide some families of bilinear and bilateral generating functions for the generalized bivariate (p,q)-Bernoulli-Fibonacci polynomials.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Multiple convolution formulae on bivariate fibonacci and lucas polynomials
    Chu, Wenchang
    Yan, Qinglun
    UTILITAS MATHEMATICA, 2007, 74 : 145 - 153
  • [43] GENERALIZED BIVARIATE CONDITIONAL FIBONACCI AND LUCAS HYBRINOMIALS
    Kome, Sure
    Dallaroglu, Zeynep Kumtas
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (01): : 37 - 63
  • [44] On convolved generalized Fibonacci and Lucas polynomials
    Ramirez, Jose L.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 208 - 213
  • [45] Generalized Fibonacci and Lucas polynomials and their associated diagonal polynomials
    Swamy, MNS
    FIBONACCI QUARTERLY, 1999, 37 (03): : 213 - 222
  • [46] Incomplete generalized Fibonacci and Lucas polynomials
    Ramirez, Jose L.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (02): : 363 - 373
  • [47] PROPERTIES OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS
    Agrawal, Garvita
    Teeth, Manjeet Singh
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2022, 21 (3-4): : 175 - 188
  • [48] On generalized Fibonacci and Lucas hybrid polynomials
    Ait-Amrane, N. Rosa
    Belbachir, Hacene
    Tan, Elif
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (06) : 2069 - 2077
  • [49] A New Approach to q-Bernoulli Numbers and q-Bernoulli Polynomials Related to q-Bernstein Polynomials
    Acikgoz, Mehmet
    Erdal, Dilek
    Araci, Serkan
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [50] A generalized bivariate Bernoulli model with covariate dependence
    Islam, M. Ataharul
    Alzaid, Abdulhamid A.
    Chowdhury, Rafiqul I.
    Sultan, Khalaf S.
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (05) : 1064 - 1075