A Note on Edge Coloring of Linear Hypergraphs

被引:0
|
作者
Qi WANG [1 ]
Xia ZHANG [1 ]
机构
[1] School of Mathematics and Statistics, Shandong Normal University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
A k-edge coloring of a hypergraph H is a coloring of the edges of H with k colors such that any two intersecting edges receive distinct colors. The Erdos-Faber-Lovasz conjecture states that every loopless linear hypergraph with n vertices has an n-edge coloring. In 2021,Kang, Kelly, K¨uhn, Methuku and Osthus confirmed the conjecture for sufficiently large n. In this paper, the conjecture is verified for collision-weak hypergraphs. This result strictly extends two related ones of Bretto, Faisant and Hennecart in 2020.
引用
收藏
页码:535 / 541
页数:7
相关论文
共 50 条
  • [41] A Note on the Lagrangian of Linear 3-Uniform Hypergraphs
    Hu, Sinan
    Wu, Biao
    SYMMETRY-BASEL, 2022, 14 (07):
  • [42] Noncontextual coloring of orthogonality hypergraphs
    Shekarriz, Mohammad H.
    Svozil, Karl
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (03)
  • [43] Coloring -Embeddable -Uniform Hypergraphs
    Heise, Carl Georg
    Panagiotou, Konstantinos
    Pikhurko, Oleg
    Taraz, Anusch
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (04) : 663 - 679
  • [44] 2-COLORING OF HYPERGRAPHS
    SEYMOUR, PD
    QUARTERLY JOURNAL OF MATHEMATICS, 1974, 25 (99): : 303 - 312
  • [45] Coloring hypergraphs with excluded minors
    Steiner, Raphael
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [46] Proper Coloring of Geometric Hypergraphs
    Balázs Keszegh
    Dömötör Pálvölgyi
    Discrete & Computational Geometry, 2019, 62 : 674 - 689
  • [47] Coloring hypergraphs of low connectivity
    Schweser, Thomas
    Stiebitz, Michael
    Toft, Bjarne
    JOURNAL OF COMBINATORICS, 2022, 13 (01) : 1 - 21
  • [48] HARMONIOUS COLORING OF UNIFORM HYPERGRAPHS
    Bosek, Bartlomiej
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Rzazewski, Pawel
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (01) : 73 - 87
  • [49] Randomly coloring simple hypergraphs
    Frieze, Alan
    Melsted, Pall
    INFORMATION PROCESSING LETTERS, 2011, 111 (17) : 848 - 853
  • [50] Coloring linear hypergraphs: the Erdos-Faber-Lovasz conjecture and the Combinatorial Nullstellensatz
    Janzer, Oliver
    Nagy, Zoltan Lorant
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (09) : 1991 - 2001