A k-edge coloring of a hypergraph H is a coloring of the edges of H with k colors such that any two intersecting edges receive distinct colors. The Erdos-Faber-Lovasz conjecture states that every loopless linear hypergraph with n vertices has an n-edge coloring. In 2021,Kang, Kelly, K¨uhn, Methuku and Osthus confirmed the conjecture for sufficiently large n. In this paper, the conjecture is verified for collision-weak hypergraphs. This result strictly extends two related ones of Bretto, Faisant and Hennecart in 2020.
机构:
Nanjing Xiaozhuang Univ, Sch Informat & Engn, Nanjing 211171, Jiangsu, Peoples R ChinaNanjing Xiaozhuang Univ, Sch Informat & Engn, Nanjing 211171, Jiangsu, Peoples R China
Dong, Wei
Li, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Dept Math, Coll Sci, Nanjing 211100, Jiangsu, Peoples R ChinaNanjing Xiaozhuang Univ, Sch Informat & Engn, Nanjing 211171, Jiangsu, Peoples R China
Li, Rui
Xu, Bao Gang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Xiaozhuang Univ, Sch Informat & Engn, Nanjing 211171, Jiangsu, Peoples R China
机构:
TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,DEPT MATH,IL-69978 TEL AVIV,ISRAELTEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,DEPT MATH,IL-69978 TEL AVIV,ISRAEL