A Note on Edge Coloring of Linear Hypergraphs

被引:0
|
作者
Qi WANG [1 ]
Xia ZHANG [1 ]
机构
[1] School of Mathematics and Statistics, Shandong Normal University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
A k-edge coloring of a hypergraph H is a coloring of the edges of H with k colors such that any two intersecting edges receive distinct colors. The Erdos-Faber-Lovasz conjecture states that every loopless linear hypergraph with n vertices has an n-edge coloring. In 2021,Kang, Kelly, K¨uhn, Methuku and Osthus confirmed the conjecture for sufficiently large n. In this paper, the conjecture is verified for collision-weak hypergraphs. This result strictly extends two related ones of Bretto, Faisant and Hennecart in 2020.
引用
收藏
页码:535 / 541
页数:7
相关论文
共 50 条
  • [31] A note on the edge cover number and independence number in hypergraphs
    Berger, Eli
    Ziv, Ran
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2649 - 2654
  • [32] Super Edge-Connected Linear Hypergraphs
    Lin, Shangwei
    Pei, Jianfeng
    Li, Chunfang
    PARALLEL PROCESSING LETTERS, 2020, 30 (03)
  • [33] COLORING SPARSE HYPERGRAPHS
    Cooper, Jeff
    Mubayi, Dhruv
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) : 1165 - 1180
  • [34] A note on covering edge colored hypergraphs by monochromatic components
    Fujita, Shinya
    Furuya, Michitaka
    Gyarfas, Andras
    Toth, Agnes
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02):
  • [35] A note on adjacent vertex distinguishing edge coloring of graphs
    Jia, Xiuqing
    Wen, Fei
    Li, Zepeng
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025,
  • [36] A note on acyclic edge coloring of complete bipartite graphs
    Basavaraju, Manu
    Chandran, L. Sunil
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4646 - 4648
  • [37] A note on rainbow stackings of random edge-colorings of hypergraphs
    Gu, Ran
    DISCRETE MATHEMATICS, 2025, 348 (02)
  • [38] Approximate coloring of uniform hypergraphs
    Krivelevich, M
    Sudakov, B
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2003, 49 (01): : 2 - 12
  • [39] Proper Coloring of Geometric Hypergraphs
    Keszegh, Balazs
    Palvolgyi, Domotor
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 62 (03) : 674 - 689
  • [40] Coloring face hypergraphs on surfaces
    Dvorák, Z
    Král, D
    Skrekovski, R
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (01) : 95 - 110