A New Signature-Based Algorithms for Computing Gr?bner Bases

被引:0
|
作者
ZHENG Licui [1 ]
LIU Jinwang [2 ]
LIU Weijun [1 ]
LI Dongmei [2 ]
机构
[1] School of Mathematics and Statistics,Central South University
[2] Department of Mathematics and Computing Sciences,Hunan University of Science and Technology
基金
中国国家自然科学基金;
关键词
Factor; Gr?bner basic; signature-based;
D O I
暂无
中图分类号
O154.2 [同调代数];
学科分类号
0701 ; 070101 ;
摘要
Gao,Volny and Wang(2010) gave a simple criterion for signature-based algorithms to compute Grobner bases.It gives a unified frame work for computing Grobner bases for both ideals and syzygies,the latter is very important in free resolutions in homological algebra.Sun and Wang(2011) later generalized the GVW criterion to a more general situation(to include the F5 Algorithm).Signature-based algorithms have become increasingly popular for computing Grobner bases.The current paper introduces a concept of factor pairs that can be used to detect more useless J-pairs than the generalized GVW criterion,thus improving signature-based algorithms.
引用
收藏
页码:210 / 221
页数:12
相关论文
共 50 条
  • [41] On noncommutative Gröbner bases over rings
    Golod E.S.
    Journal of Mathematical Sciences, 2007, 140 (2) : 239 - 242
  • [42] Gröbner bases for bipartite determinantal ideals
    Illian, Josua
    Li, Li
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (01) : 124 - 147
  • [43] Modular Techniques for Noncommutative Gröbner Bases
    Wolfram Decker
    Christian Eder
    Viktor Levandovskyy
    Sharwan K. Tiwari
    Mathematics in Computer Science, 2020, 14 : 19 - 33
  • [44] Gröbner bases for complete uniform families
    Hegedűs, Gábor
    Rónyai, Lajos
    Journal of Algebraic Combinatorics, 2003, 17 (02): : 171 - 180
  • [45] Gröbner Bases for Complete Uniform Families
    Gábor Hegedűs
    Lajos Rónyai
    Journal of Algebraic Combinatorics, 2003, 17 : 171 - 180
  • [46] Some new signature schemes and secret sharing schemes based on the Gröbner basis cryptosystems
    Li, Hengyan
    Chang, Shuizhen
    Xu, Zhonghai
    Journal of Computational Information Systems, 2013, 9 (13): : 5133 - 5140
  • [47] A signature-based algorithm for computing Grobner-Shirshov bases in skew solvable polynomial rings
    Zhao, Xiangui
    Zhang, Yang
    OPEN MATHEMATICS, 2015, 13 : 298 - 307
  • [48] On Signature-based Grobner Bases over Euclidean Rings
    Eder, Christian
    Pfister, Gerhard
    Popescu, Adrian
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, : 141 - 148
  • [49] A case study of Grid Computing and computer algebra: parallel Gröbner Bases and Characteristic Sets
    Iyad A. Ajwa
    The Journal of Supercomputing, 2007, 41 : 53 - 62
  • [50] Invariant G2V algorithm for computing SAGBI-Gröbner bases
    Amir Hashemi
    Benyamin M.-Alizadeh
    Monireh Riahi
    Science China Mathematics, 2013, 56 : 1781 - 1794