On noncommutative Gröbner bases over rings

被引:0
|
作者
Golod E.S. [1 ]
机构
[1] Moscow State University,
关键词
Polynomial Ring; Homology Class; Monomial Ideal; Initial Term; Valuation Domain;
D O I
10.1007/s10958-007-0420-y
中图分类号
学科分类号
摘要
Let R be a commutative ring. It is proved that for verification of whether a set of elements {f α} of the free associative algebra over R is a Gröbner basis (with respect to some admissible monomial order) of the (bilateral) ideal that the elements f α generate it is sufficient to check the reducibility to zero of S-polynomials with respect to {f α} iff R is an arithmetical ring. Some related open questions and examples are also discussed. © 2007 Springer Science+Business Media, Inc.
引用
收藏
页码:239 / 242
页数:3
相关论文
共 50 条
  • [1] Modular Techniques for Noncommutative Gröbner Bases
    Wolfram Decker
    Christian Eder
    Viktor Levandovskyy
    Sharwan K. Tiwari
    Mathematics in Computer Science, 2020, 14 : 19 - 33
  • [2] Properties of Entire Functions Over Polynomial Rings via Gröbner Bases
    J. Apel
    J. Stückrad
    P. Tworzewski
    T. Winiarski
    Applicable Algebra in Engineering, Communication and Computing, 2003, 14 : 1 - 10
  • [3] On computing Gröbner bases in rings of differential operators
    XiaoDong Ma
    Yao Sun
    DingKang Wang
    Science China Mathematics, 2011, 54 : 1077 - 1087
  • [4] On computing Grbner bases in rings of differential operators
    MA XiaoDong
    Science China(Mathematics), 2011, 54 (06) : 1077 - 1087
  • [5] Gröbner rings
    Pola E.
    Yengui I.
    Acta Scientiarum Mathematicarum, 2014, 80 (3-4): : 363 - 372
  • [6] Relative Gröbner and Involutive Bases for Ideals in Quotient Rings
    Amir Hashemi
    Matthias Orth
    Werner M. Seiler
    Mathematics in Computer Science, 2021, 15 : 453 - 482
  • [7] Chiral rings, Futaki invariants, plethystics, and Gröbner bases
    Jiakang Bao
    Yang-Hui He
    Yan Xiao
    Journal of High Energy Physics, 2021
  • [8] Strong Gröbner bases and linear algebra in multivariate polynomial rings over Euclidean domains
    Aichinger, Erhard
    EXPOSITIONES MATHEMATICAE, 2024, 42 (06)
  • [9] NONCOMMUTATIVE GROBNER BASES OVER RINGS
    Bouesso, Andre Saint Eudes Mialebama
    Sow, Djiby
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 541 - 557
  • [10] On Computing Gröbner Bases in Rings of Differential Operators with Coefficients in a Ring
    Meng Zhou
    Franz Winkler
    Mathematics in Computer Science, 2007, 1 (2) : 211 - 223