Bridging multifluid and drift-diffusion models for bounded plasmas

被引:0
|
作者
Gangemi, G. M. [1 ]
Laguna, A. Alvarez [3 ]
Massot, M. [4 ]
Hillewaert, K. [1 ]
Magin, T. [2 ,5 ]
机构
[1] Univ Liege, Aerosp & Mech Engn, Quartier Polytech, Alle Decouverte 99, B-4000 Liege, Belgium
[2] Von Karman Inst Fluid Dynam, Aeronaut & Aerosp, Waterloosesteenweg 72, B-1640 Rhode St Genese, Belgium
[3] Inst Polytech Paris, Ecole Polytech, Ctr Natl Rech Sci CNRS, Lab Phys Plasmas LPP, F-91120 Palaiseau, France
[4] Inst Polytech Paris, Ecole Polytech, Ctr Math Appl CMAP, Ctr Natl Rech Sci CNRS, F-91120 Palaiseau, France
[5] Univ Libre Bruxelles, Aerothermo Mech Lab, Ave FD Roosevelt 50, B-1050 Brussels, Belgium
关键词
SHEATH;
D O I
10.1063/5.0240640
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fluid models represent a valid alternative to kinetic approaches in simulating low-temperature discharges: a well-designed strategy must be able to combine the ability to predict a smooth transition from the quasineutral bulk to the sheath, where a space charge is built at a reasonable computational cost. These approaches belong to two families: multifluid models, where momenta of each species are modeled separately, and drift-diffusion models, where the dynamics of particles is dependent only on the gradient of particle concentration and on the electric force. It is shown that an equivalence between the two models exists and that it corresponds to a threshold Knudsen number, in the order of the square root of the electron-to-ion mass ratio; for an argon isothermal discharge, this value is given by a neutral background pressure P-n greater than or similar to 1000 Pa. This equivalence allows us to derive two analytical formulas for a priori estimation of the sheath width: the first one does not need any additional hypothesis but relies only on the natural transition from the quasineutral bulk to the sheath; the second approach improves the prediction by imposing a threshold value for the charge separation. The new analytical expressions provide better estimations of the floating sheath dimension in collisions-dominated regimes when tested against two models from the literature.(c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0240640
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Enhanced reliability of drift-diffusion approximation for electrons in fluid models for nonthermal plasmas
    Becker, M. M.
    Loffhagen, D.
    AIP ADVANCES, 2013, 3 (01):
  • [2] Kinetic models for chemotaxis and their drift-diffusion limits
    Chalub, FACC
    Markowich, PA
    Perthame, B
    Schmeiser, C
    MONATSHEFTE FUR MATHEMATIK, 2004, 142 (1-2): : 123 - 141
  • [3] Kinetic models for chemotaxis and their drift-diffusion limits
    Chalub, FACC
    Markowich, PA
    Perthame, B
    Schmeiser, C
    NONLINEAR DIFFERENTIAL EQUATION MODELS, 2004, : 123 - 141
  • [4] Kinetic Models for Chemotaxis and their Drift-Diffusion Limits
    Fabio A. C. C. Chalub
    Peter A. Markowich
    Benoît Perthame
    Christian Schmeiser
    Monatshefte für Mathematik, 2004, 142 : 123 - 141
  • [5] A hierarchy of hydrodynamic models for plasmas.: Quasi-neutral limits in the drift-diffusion equations
    Jüngel, A
    Peng, YJ
    ASYMPTOTIC ANALYSIS, 2001, 28 (01) : 49 - 73
  • [6] Logarithmic Sobolev inequalities for bounded domains and applications to drift-diffusion equations
    Abdo, Elie
    Lee, Fizay-Noah
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (01)
  • [7] Boundary conditions for drift-diffusion equations in gas-discharge plasmas
    Gorin, V. V.
    Kudryavtsev, A. A.
    Yao, Jingfeng
    Yuan, Chengxun
    Zhou, Zhongxiang
    PHYSICS OF PLASMAS, 2020, 27 (01)
  • [8] Quantum energy-transport and drift-diffusion models
    Degond, P
    Méhats, F
    Ringhofer, C
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (3-4) : 625 - 667
  • [9] Value Certainty in Drift-Diffusion Models of Preferential Choice
    Lee, Douglas G.
    Usher, Marius
    PSYCHOLOGICAL REVIEW, 2023, 130 (03) : 790 - 806
  • [10] Improving parameter recovery for conflict drift-diffusion models
    Huebner, Ronald
    Pelzer, Thomas
    BEHAVIOR RESEARCH METHODS, 2020, 52 (05) : 1848 - 1866