Logarithmic Sobolev inequalities for bounded domains and applications to drift-diffusion equations

被引:0
|
作者
Abdo, Elie [1 ]
Lee, Fizay-Noah [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37235 USA
关键词
Logarithmic Sobolev inequalities; Interpolation; Nernst-Planck equations; Long-time dynamics; NERNST-PLANCK;
D O I
10.1016/j.jfa.2024.110716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove logarithmic Sobolev inequalities on higher-dimensional bounded smooth domains based on novel GagliardoNirenberg type interpolation inequalities. Moreover, we use them to address the long-time dynamics of some nonlinear nonlocal drift-diffusion models and prove the exponential decay of their solutions to constant steady states. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Drift-diffusion equations and applications
    Allegretto, W
    MATHEMATICAL PROBLEMS IN SEMINCONDUCTOR PHYSICS, 2003, 1823 : 57 - 95
  • [2] Weighted Sobolev's inequalities for bounded domains and singular elliptic equations
    Duc, Duong Minh
    Phuc, Nguyen Cong
    Nguyen, Truyen Van
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (02) : 615 - 642
  • [3] Logarithmic Sobolev inequalities for fractional diffusion
    Fan, XiLiang
    STATISTICS & PROBABILITY LETTERS, 2015, 106 : 165 - 172
  • [4] THE DEGENERATE DRIFT-DIFFUSION SYSTEM WITH THE SOBOLEV CRITICAL EXPONENT
    Ogawa, Takayoshi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (04): : 875 - 886
  • [5] Iterative solution of the drift-diffusion equations
    Abdeljalil Nachaoui
    Numerical Algorithms, 1999, 21 : 323 - 341
  • [6] Iterative solution of the drift-diffusion equations
    Nachaoui, A
    NUMERICAL ALGORITHMS, 1999, 21 (1-4) : 323 - 341
  • [7] STOCHASTIC DIFFERENTIAL EQUATIONS WITH SOBOLEV DIFFUSION AND SINGULAR DRIFT AND APPLICATIONS
    Zhang, Xicheng
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (05): : 2697 - 2732
  • [8] Bridging multifluid and drift-diffusion models for bounded plasmas
    Gangemi, G. M.
    Laguna, A. Alvarez
    Massot, M.
    Hillewaert, K.
    Magin, T.
    PHYSICS OF PLASMAS, 2025, 32 (02)
  • [9] Solutions to a Class of Forced Drift-Diffusion Equations with Applications to the Magneto-Geostrophic Equations
    Friedlander S.
    Suen A.
    Annals of PDE, 2018, 4 (2)
  • [10] Drift-diffusion equations on domains in Rd: Essential self-adjointness and stochastic completeness
    Nenciu, Gheorghe
    Nenciu, Irina
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (08) : 2619 - 2654