Bridging multifluid and drift-diffusion models for bounded plasmas

被引:0
|
作者
Gangemi, G. M. [1 ]
Laguna, A. Alvarez [3 ]
Massot, M. [4 ]
Hillewaert, K. [1 ]
Magin, T. [2 ,5 ]
机构
[1] Univ Liege, Aerosp & Mech Engn, Quartier Polytech, Alle Decouverte 99, B-4000 Liege, Belgium
[2] Von Karman Inst Fluid Dynam, Aeronaut & Aerosp, Waterloosesteenweg 72, B-1640 Rhode St Genese, Belgium
[3] Inst Polytech Paris, Ecole Polytech, Ctr Natl Rech Sci CNRS, Lab Phys Plasmas LPP, F-91120 Palaiseau, France
[4] Inst Polytech Paris, Ecole Polytech, Ctr Math Appl CMAP, Ctr Natl Rech Sci CNRS, F-91120 Palaiseau, France
[5] Univ Libre Bruxelles, Aerothermo Mech Lab, Ave FD Roosevelt 50, B-1050 Brussels, Belgium
关键词
SHEATH;
D O I
10.1063/5.0240640
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fluid models represent a valid alternative to kinetic approaches in simulating low-temperature discharges: a well-designed strategy must be able to combine the ability to predict a smooth transition from the quasineutral bulk to the sheath, where a space charge is built at a reasonable computational cost. These approaches belong to two families: multifluid models, where momenta of each species are modeled separately, and drift-diffusion models, where the dynamics of particles is dependent only on the gradient of particle concentration and on the electric force. It is shown that an equivalence between the two models exists and that it corresponds to a threshold Knudsen number, in the order of the square root of the electron-to-ion mass ratio; for an argon isothermal discharge, this value is given by a neutral background pressure P-n greater than or similar to 1000 Pa. This equivalence allows us to derive two analytical formulas for a priori estimation of the sheath width: the first one does not need any additional hypothesis but relies only on the natural transition from the quasineutral bulk to the sheath; the second approach improves the prediction by imposing a threshold value for the charge separation. The new analytical expressions provide better estimations of the floating sheath dimension in collisions-dominated regimes when tested against two models from the literature.(c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0240640
引用
收藏
页数:13
相关论文
共 50 条
  • [21] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [22] Modeling of drift-diffusion systems
    Holger Stephan
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 33 - 53
  • [23] Drift-Diffusion MOSFET Modelling
    Bekaddour, A.
    Bouazza, B.
    Chabanne-Sari, N. E.
    AFRICAN REVIEW OF PHYSICS, 2008, 2 : 3 - 3
  • [24] Modeling of drift-diffusion systems
    Stephan, Holger
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (01): : 33 - 53
  • [25] The drift-diffusion equation revisited
    Assad, F
    Banoo, K
    Lundstrom, M
    SOLID-STATE ELECTRONICS, 1998, 42 (03) : 283 - 295
  • [26] Testing the drift-diffusion model
    Fudenberg, Drew
    Newey, Whitney
    Strack, Philipp
    Strzalecki, Tomasz
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (52) : 33141 - 33148
  • [27] Anatomy of the drift-diffusion relationship
    Bringuier, E
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (04): : 959 - 964
  • [28] EXISTENCE OF BOUNDED STEADY STATE SOLUTIONS TO SPIN-POLARIZED DRIFT-DIFFUSION SYSTEMS
    Glitzky, Annegret
    Gaertner, Klaus
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 41 (06) : 2489 - 2513
  • [29] ON COUPLING THE DRIFT-DIFFUSION AND MONTE-CARLO MODELS FOR MOSFET SIMULATION
    PATIL, MB
    OHKURA, Y
    TOYABE, T
    IHARA, S
    SOLID-STATE ELECTRONICS, 1995, 38 (04) : 935 - 936
  • [30] QUASI-NEUTRAL LIMIT OF THE MULTIDIMENSIONAL DRIFT-DIFFUSION MODELS FOR SEMICONDUCTORS
    Ju, Qiangchang
    Wang, Shu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (09): : 1649 - 1679