Bridging multifluid and drift-diffusion models for bounded plasmas

被引:0
|
作者
Gangemi, G. M. [1 ]
Laguna, A. Alvarez [3 ]
Massot, M. [4 ]
Hillewaert, K. [1 ]
Magin, T. [2 ,5 ]
机构
[1] Univ Liege, Aerosp & Mech Engn, Quartier Polytech, Alle Decouverte 99, B-4000 Liege, Belgium
[2] Von Karman Inst Fluid Dynam, Aeronaut & Aerosp, Waterloosesteenweg 72, B-1640 Rhode St Genese, Belgium
[3] Inst Polytech Paris, Ecole Polytech, Ctr Natl Rech Sci CNRS, Lab Phys Plasmas LPP, F-91120 Palaiseau, France
[4] Inst Polytech Paris, Ecole Polytech, Ctr Math Appl CMAP, Ctr Natl Rech Sci CNRS, F-91120 Palaiseau, France
[5] Univ Libre Bruxelles, Aerothermo Mech Lab, Ave FD Roosevelt 50, B-1050 Brussels, Belgium
关键词
SHEATH;
D O I
10.1063/5.0240640
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fluid models represent a valid alternative to kinetic approaches in simulating low-temperature discharges: a well-designed strategy must be able to combine the ability to predict a smooth transition from the quasineutral bulk to the sheath, where a space charge is built at a reasonable computational cost. These approaches belong to two families: multifluid models, where momenta of each species are modeled separately, and drift-diffusion models, where the dynamics of particles is dependent only on the gradient of particle concentration and on the electric force. It is shown that an equivalence between the two models exists and that it corresponds to a threshold Knudsen number, in the order of the square root of the electron-to-ion mass ratio; for an argon isothermal discharge, this value is given by a neutral background pressure P-n greater than or similar to 1000 Pa. This equivalence allows us to derive two analytical formulas for a priori estimation of the sheath width: the first one does not need any additional hypothesis but relies only on the natural transition from the quasineutral bulk to the sheath; the second approach improves the prediction by imposing a threshold value for the charge separation. The new analytical expressions provide better estimations of the floating sheath dimension in collisions-dominated regimes when tested against two models from the literature.(c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0240640
引用
收藏
页数:13
相关论文
共 50 条
  • [31] TWO SPINORIAL DRIFT-DIFFUSION MODELS FOR QUANTUM ELECTRON TRANSPORT IN GRAPHENE
    Zamponi, Nicola
    Juengel, Ansgar
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (03) : 807 - 830
  • [32] TWO-DIMENSIONAL EXPONENTIAL FITTING AND APPLICATIONS TO DRIFT-DIFFUSION MODELS
    BREZZI, F
    MARINI, LD
    PIETRA, P
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) : 1342 - 1355
  • [33] Quantum-corrected drift-diffusion models for transport in semiconductor devices
    de Falco, C
    Gatti, E
    Lacaita, AL
    Sacco, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (02) : 533 - 561
  • [34] Improvements for drift-diffusion plasma fluid models with explicit time integration
    Teunissen, Jannis
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2020, 29 (01):
  • [35] Theoretical foundations of the quantum drift-diffusion and density-gradient models
    Baccarani, Giorgio
    Gnani, Elena
    Gnudi, Antonio
    Reggiani, Susanna
    Rudan, Massimo
    SOLID-STATE ELECTRONICS, 2008, 52 (04) : 526 - 532
  • [36] Outflow probability for drift-diffusion dynamics
    Hinkel, Julia
    Mahnke, Reinhard
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (06) : 1542 - 1561
  • [37] The approximation problem for drift-diffusion systems
    Jerome, JW
    SIAM REVIEW, 1995, 37 (04) : 552 - 572
  • [38] Generalized Drift-Diffusion Model In Semiconductors
    Mesbah, S.
    Bendib-Kalache, K.
    Bendib, A.
    LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 252 - 255
  • [39] NUMERICAL SOLUTIONS FOR MULTIFLUID MODELS OF TOKOMAK PLASMAS
    DUECHS, DF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (11): : 1488 - &
  • [40] Iterative solution of the drift-diffusion equations
    Abdeljalil Nachaoui
    Numerical Algorithms, 1999, 21 : 323 - 341