SCIENTIFIC MACHINE LEARNING: A SYMBIOSIS

被引:0
|
作者
Keith, Brendan [1 ]
O'leary-roseberry, Thomas [2 ]
Sanderse, Benjamin [3 ]
Scheichl, Robert [4 ]
Waanders, Bart van bloemen [5 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] Univ Texas Austin, Austin, TX USA
[3] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[4] Heidelberg Univ, Heidelberg, Germany
[5] Sandia Natl Labs, Albuquerque, NM USA
来源
FOUNDATIONS OF DATA SCIENCE | 2025年 / 7卷 / 01期
关键词
D O I
10.3934/fods.2024051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This editorial serves as a preface to the "Scientific Machine Learning" (SciML) special issue of the AIMS Foundations of Data Science journal. In this piece, we contend that SciML exists in a symbiotic relationship with the fields of computational science and engineering (CSE) and machine learning (ML). We highlight the progress (and limitations) of CSE and reflect on the recent successes of ML. While ML creates significant possibilities for advancing simulation techniques, it lacks the mathematical guarantees that are typically found in CSE. We argue that as SciML develops and embraces the remarkable capabilities of ML, it will support, not replace, traditional methods of CSE. We then overview some existing challenges and opportunities in this interdisciplinary field and close by introducing the special issue papers.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Integrated Machine Learning in the Kepler Scientific Workflow System
    Nguyen, Mai H.
    Crawl, Daniel
    Masoumi, Tahereh
    Altintas, Ilkay
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 2443 - 2448
  • [32] Diagnosis Recommendation Using Machine Learning Scientific Workflows
    Ahmed, Ishtiaq
    Lu, Shiyong
    Bai, Changxin
    Bhuyan, Fahima Amin
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 82 - 90
  • [33] Topical issue scientific machine learning (2/2)
    Benner, Peter
    Klawonn, Axel
    Stoll, Martin
    GAMM Mitteilungen, 2021, 44 (02)
  • [34] Enabling scientific machine learning in MOOSE using Libtorch
    German, Peter
    Yushu, Dewen
    SOFTWAREX, 2023, 23
  • [35] Graph coarsening: from scientific computing to machine learning
    Chen J.
    Saad Y.
    Zhang Z.
    SeMA Journal, 2022, 79 (1) : 187 - 223
  • [36] Baler - Machine Learning Based Compression of Scientific Data
    Folkesson, Fritjof Bengtsson
    Doglioni, Caterina
    Ekman, Per Alexander
    Gallen, Axel
    Jawahar, Pratik
    Santasmasas, Marta Camps
    Skidmore, Nicola
    26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, 2024, 295
  • [37] Deep Machine Learning in Optimization of Scientific Research Activities
    Melnikova, E. V.
    SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2023, 50 (01) : 53 - 58
  • [38] Generating Flavor Molecules Using Scientific Machine Learning
    Queiroz, Luana P.
    Rebello, Carine M.
    Costa, Erbet A.
    Santana, Vinicius V.
    Rodrigues, Bruno C. L.
    Rodrigues, Alirio E.
    Ribeiro, Ana M.
    Nogueira, Idelfonso B. R.
    ACS OMEGA, 2023, 8 (12): : 10875 - 10887
  • [39] Scientific machine learning for modeling and simulating complex fluids
    Lennon, Kyle R.
    McKinley, Gareth H.
    Swan, James W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (27)
  • [40] Reliable edge machine learning hardware for scientific applications
    Baldi, Tommaso
    Campos, Javier
    Hawks, Ben
    Ngadiuba, Jennifer
    Tran, Nhan
    Diaz, Daniel
    Duarte, Javier
    Kastner, Ryan
    Meza, Andres
    Quinnan, Melissa
    Weng, Olivia
    Geniesse, Caleb
    Gholami, Amir
    Mahoney, Michael W.
    Loncar, Vladimir
    Harris, Philip
    Agar, Joshua
    Qin, Shuyu
    2024 IEEE 42ND VLSI TEST SYMPOSIUM, VTS 2024, 2024,